Charging Station Location and Sizing for Electric Vehicles Under Congestion

尺寸 双层优化 数学优化 排队 计算机科学 概率逻辑 充电站 水准点(测量) 位置模型 服务(商务) 排队论 电动汽车 运筹学 最优化问题 工程类 计算机网络 数学 功率(物理) 艺术 视觉艺术 人工智能 经济 经济 地理 物理 量子力学 大地测量学
作者
Ömer Burak Kınay,Fatma Gzara,Sibel A. Alumur
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:15
标识
DOI:10.1287/trsc.2021.0494
摘要

This paper studies the problem of determining the strategic location of charging stations and their capacity levels under stochastic electric vehicle flows and charging times taking into account the route choice response of users. The problem is modeled using bilevel optimization, where the network planner or leader minimizes the total infrastructure cost of locating and sizing charging stations while ensuring a probabilistic service requirement on the waiting time to charge. Electric vehicle users or followers, on the other hand, minimize route length and may be cooperative or noncooperative. Their choice of route in turn determines the charging demand and waiting times at the charging stations and hence, the need to account for their decisions by the leader. The bilevel problem reduces to a single-level mixed-integer model using the optimality conditions of the follower’s problem when the charging stations operate as M/M/c queues and the followers are cooperative. To solve the bilevel model, a decomposition-based solution methodology is developed that uses a new logic-based Benders algorithm for the location-only problem. Computational experiments are performed on benchmark and real-life highway networks, including a new eastern U.S. network. The impact of route choice response, service requirements, and deviation tolerance on the location and sizing decisions are analyzed. The analysis demonstrates that stringent service requirements increase the capacity levels at open charging stations rather than their number and that solutions allowing higher deviations are less costly. Moreover, the difference between solutions under cooperative and uncooperative route choices is more significant when the deviation tolerance is lower. History: This paper has been accepted for the Transportation Science Special Issue on 2021 TSL Workshop: Supply and Demand Interplay in Transport and Logistics. Funding: This research was supported by the Ontario Graduate Scholarship when Ö. B. Kınay was a PhD candidate at the University of Waterloo, and this support is acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0494 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的绮烟完成签到,获得积分20
1秒前
xiongzi完成签到,获得积分20
1秒前
Tcell完成签到,获得积分10
2秒前
Vivian完成签到,获得积分10
2秒前
我是老大应助jyhh采纳,获得10
3秒前
所所应助疲惫的派大星采纳,获得10
3秒前
nczpf2010发布了新的文献求助10
3秒前
4秒前
淡然依玉发布了新的文献求助10
4秒前
1111111111应助不想读文献采纳,获得10
4秒前
xiongzi发布了新的文献求助10
6秒前
Hikx完成签到 ,获得积分10
6秒前
aq完成签到,获得积分10
9秒前
希望天下0贩的0应助Yy采纳,获得10
9秒前
顾矜应助Danqing采纳,获得10
9秒前
求索发布了新的文献求助10
9秒前
9秒前
聪慧的问筠完成签到 ,获得积分10
10秒前
沉默的倔驴应助Beginner采纳,获得10
10秒前
BowieHuang应助lqhccww采纳,获得10
10秒前
jyhh完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
mable完成签到,获得积分10
12秒前
dududu发布了新的文献求助10
13秒前
meteor完成签到,获得积分20
14秒前
14秒前
王小乔完成签到 ,获得积分10
15秒前
科研老完成签到 ,获得积分20
16秒前
kiki0808完成签到 ,获得积分10
16秒前
leslie应助nczpf2010采纳,获得10
16秒前
小白应助nczpf2010采纳,获得10
16秒前
jyhh发布了新的文献求助10
17秒前
17完成签到 ,获得积分10
17秒前
兔子完成签到,获得积分10
17秒前
mable发布了新的文献求助10
18秒前
18秒前
思源应助huqing采纳,获得10
18秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430