MULTIFACTOR REGRESSION MODEL FOR PREDICTION OF CHRONIC RHINOSINUSITIS RECURRENCE

慢性鼻-鼻窦炎 医学 回归分析 多元统计 残余物 统计 内科学 回归 线性回归 鼻窦炎 逻辑回归 数学 外科 算法
作者
Maksym Herasymiuk,А. С. Сверстюк,І. В. Кіт
出处
期刊:Wiadomości lekarskie (Warsaw Poland) [Foundation of Polish Physicians-Pro-Medica]
卷期号:76 (5): 928-935 被引量:2
标识
DOI:10.36740/wlek202305106
摘要

, , The aim: To propose an approach to forecasting the risk of chronic rhinosinusitis recurrence based on multivariate regression analysis for effective diagnosis and carrying out treatment and preventive measures. Materials and methods: 104 patients aged 18 to 80, including 58 women and 46 men, diagnosed with chronic rhinosinusitis were examined. Results: To build a multifactorial regression model for predicting the recurrence of chronic rhinosinusitis, probable factors of the occurrence of the disease were selected. 14 possible factors were analyzed using multivariate regression analysis. 13 risk factors were selected for predicting recurrence of chronic rhinosinusitis with a significance level of less than 0.05. Histograms of the residual deviations of predicting the recurrence of chronic rhinosinusitis were obtained, which are distributed symmetrically, and a normal-probability straight line is presented, on which there are no systematic deviations. The given results confirm the statistical hypothesis that the residual deviations correspond to the normal distribution law. Residual deviations relative to the predicted values are scattered chaotically, which indicates the absence of dependence on the predicted values of the risk of recurrence of chronic rhinosinusitis. The value of the coefficient of determination was calculated, which is 0.988, which gives grounds to claim that 98.8% of the factors are taken into account in the model for predicting the recurrence of chronic rhinosinusitis and its high reliability and acceptability in general. Conclusions: The proposed model makes it possible to predict in advance potential complications and the possibility of recurrence of the studied disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
梅子黄时雨完成签到,获得积分10
刚刚
1秒前
1秒前
核桃发布了新的文献求助10
1秒前
明亮访烟发布了新的文献求助10
3秒前
浮游应助灰苓采纳,获得10
4秒前
路宝发布了新的文献求助10
4秒前
5秒前
暴躁的振家完成签到,获得积分10
5秒前
ddw发布了新的文献求助10
6秒前
浮游应助灰苓采纳,获得10
6秒前
诺哼哼完成签到 ,获得积分10
7秒前
kumarr发布了新的文献求助10
8秒前
iedq完成签到 ,获得积分10
9秒前
路宝完成签到,获得积分10
10秒前
12秒前
QH完成签到 ,获得积分10
12秒前
Elio发布了新的文献求助10
13秒前
搜集达人应助正直孤兰采纳,获得10
13秒前
zichun发布了新的文献求助10
14秒前
优秀的枫叶完成签到,获得积分10
15秒前
清爽的凤妖完成签到,获得积分10
18秒前
清秀网络完成签到,获得积分10
18秒前
慕青应助Mike采纳,获得10
19秒前
19秒前
FashionBoy应助优秀的枫叶采纳,获得10
20秒前
JamesPei应助醉熏的芷卉采纳,获得10
20秒前
赛赛完成签到 ,获得积分10
21秒前
zichun完成签到,获得积分20
21秒前
dap完成签到,获得积分10
22秒前
绅度完成签到,获得积分10
23秒前
24秒前
王卫应助心是明镜采纳,获得10
24秒前
xzy发布了新的文献求助20
25秒前
Lucas应助Accpt_yq采纳,获得10
26秒前
明理的喵完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
27秒前
后来完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495000
求助须知:如何正确求助?哪些是违规求助? 4592747
关于积分的说明 14438605
捐赠科研通 4525605
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464339
关于科研通互助平台的介绍 1437256