亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Laser-induced Graphene Sensor Interfaced with Machine Learning Classifiers for Hand Tremor Identification

计算机科学 人工智能 物理医学与康复 弯曲 机器学习 计算机视觉 模拟 医学 工程类 结构工程
作者
V. Tiwari,Nafize Ishtiaque Hossain,Shawana Tabassum
标识
DOI:10.1109/dcas57389.2023.10130272
摘要

Parkinson's disease is often diagnosed based on clinical signs, such as the description of a range of movement symptoms, and medical observations. Traditional diagnostic methods could be prone to subjectivity issues because they depend on the evaluation of subtle motions that might be difficult to define with the human eye. Hence, simple and reliable engineering methods are required for the early diagnosis of Parkinson's disease and for providing timely treatment to the tens of millions of patients who are affected by this disease. In this work, we developed a flexible sensor using laser-induced graphene to differentiate between natural finger bending and hand tremor. Measurements were recorded when the sensor was bent at various angles (30 degrees, 60 degrees, 90 degrees, 120 degrees, and 150 degrees) to mimic the natural finger-bending movements. Moreover, hand tremor was simulated by shaking the sensor vigorously. Our findings demonstrated a nearly linear relationship between the peak voltage measured across the laser-induced graphene sensor and the amount of bending. The degree of natural bending and hand tremors were multi-classified using a neural network machine learning classifier, showing an accuracy of 78.5% and an area under the curve of 0.97. The results of this study are promising in making an informed decision about differentiating Parkinson's-induced hand tremors from natural body movements and reducing misdiagnosis of Parkinson's.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
18秒前
米老鼠de完成签到,获得积分10
21秒前
调研昵称发布了新的文献求助20
43秒前
充电宝应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
59秒前
1分钟前
Wei发布了新的文献求助10
1分钟前
puzhongjiMiQ发布了新的文献求助10
1分钟前
1分钟前
金刚经应助puzhongjiMiQ采纳,获得10
1分钟前
万能图书馆应助puzhongjiMiQ采纳,获得10
1分钟前
大模型应助puzhongjiMiQ采纳,获得10
1分钟前
qu蛐应助puzhongjiMiQ采纳,获得10
1分钟前
香蕉觅云应助puzhongjiMiQ采纳,获得10
1分钟前
2分钟前
自信号厂完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
子车傲之完成签到,获得积分10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
小泉完成签到 ,获得积分10
4分钟前
5分钟前
氢原子完成签到,获得积分10
5分钟前
5分钟前
完美世界应助着急的一刀采纳,获得10
5分钟前
草木完成签到,获得积分10
5分钟前
zhang发布了新的文献求助10
5分钟前
充电宝应助czb采纳,获得10
6分钟前
6分钟前
czb发布了新的文献求助10
6分钟前
sarmad发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334005
捐赠科研通 2575810
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532