Zinc oxide nanoparticles: A unique saline stress mitigator with the potential to increase future crop production

APX公司 盐度 化学 农学 超氧化物歧化酶 环境科学 抗氧化剂 生物 生物化学 生态学
作者
Mahmoud F. Seleiman,Awais Ahmad,Martín Leonardo Battaglia,Hafiz Muhammad Bilal,Bushra Ahmed Alhammad,Naeem Khan
出处
期刊:South African Journal of Botany [Elsevier]
卷期号:159: 208-218 被引量:32
标识
DOI:10.1016/j.sajb.2023.06.009
摘要

Globally, soil salinity is an abiotic stress that can threaten arable lands and crop production and consequently can negatively affect food security. Therefore, the aim of this review was to study the utilizing zinc oxide nanoparticles (ZnO-NPs) as a novel approach to mitigate salinity stress and its negative impacts on environment and crop productivity. The application of ZnO-NPs can significantly enhance plant growth, physiological and metabolic activity, and yield as well as crop quality. The antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) are increased when ZnO-NPs are applied which can mitigate the damage caused by ROS species and make them a valuable tool for future agriculture. The sucrose synthesis which ultimately biosynthesizes lipopolysaccharides (LP), glycinebetaine (GB), and total soluble protein (TSP), and enhanced ribulose bisphosphate carboxylase-oxygenase activity, light-capturing efficiency of photosystem II, as well as the ability to transport electrons under salinity stress are increased by the application of ZnO-NPs. Therefore, ZnO-NPs can be used as a potential strategy for promoting precision agriculture. The existing yield gap under a saline environment can be minimized by promoting the application of ZnO-NPs as it serves as a cheap, environment-friendly, and efficient source of Zn. In a nutshell, being an efficient and eco-friendly nanomaterial ZnO-NPs play a key role in mitigating saline stress by alleviating NaCl toxicity and enhancing crop productivity in saline soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狼洪明完成签到,获得积分10
1秒前
细腻的仙人掌完成签到,获得积分10
1秒前
852应助Tonald Yang采纳,获得10
2秒前
小王同学完成签到 ,获得积分10
4秒前
4秒前
5秒前
向阳葵完成签到 ,获得积分10
5秒前
bkagyin应助细腻的仙人掌采纳,获得10
5秒前
克偃统统完成签到,获得积分10
7秒前
jane完成签到 ,获得积分10
7秒前
7秒前
阿士大夫发布了新的文献求助10
7秒前
Sodagreen2023完成签到,获得积分10
8秒前
失眠的诗蕊完成签到,获得积分0
9秒前
鸭子完成签到,获得积分10
10秒前
tingalan发布了新的文献求助10
11秒前
Youngen完成签到,获得积分10
13秒前
笨笨烨华完成签到 ,获得积分10
13秒前
Fang发布了新的文献求助10
13秒前
hyjcs完成签到,获得积分10
14秒前
one完成签到 ,获得积分10
14秒前
Senmin完成签到,获得积分10
14秒前
老徐完成签到,获得积分10
15秒前
文静千凡完成签到,获得积分10
15秒前
芮安的白丁完成签到 ,获得积分10
15秒前
Zbmd完成签到 ,获得积分10
17秒前
彳亍完成签到 ,获得积分10
17秒前
17秒前
xiaxin完成签到,获得积分10
18秒前
Yang完成签到 ,获得积分10
21秒前
Felix_glyn完成签到,获得积分10
21秒前
顺利毕业发布了新的文献求助10
22秒前
23秒前
略晓薛完成签到,获得积分10
23秒前
23秒前
夏风完成签到 ,获得积分10
24秒前
李爱国应助xiaxin采纳,获得10
24秒前
卢11完成签到,获得积分20
25秒前
思源应助科研顺利采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303371
求助须知:如何正确求助?哪些是违规求助? 2937689
关于积分的说明 8482879
捐赠科研通 2611588
什么是DOI,文献DOI怎么找? 1426065
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647026