清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 天文 量子力学 物理
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:175: 103152-103152 被引量:135
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助rebee采纳,获得10
2秒前
凉面完成签到 ,获得积分10
8秒前
13秒前
lily完成签到 ,获得积分10
13秒前
rebee发布了新的文献求助10
18秒前
41秒前
施光玲44931完成签到 ,获得积分10
46秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
shhoing应助科研通管家采纳,获得10
49秒前
隐形曼青应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
在水一方应助白华苍松采纳,获得10
1分钟前
英勇星月完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
huiliang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
游泳池完成签到,获得积分10
1分钟前
DGYT7786完成签到 ,获得积分10
1分钟前
理想三寻完成签到,获得积分10
1分钟前
qianzhihe2完成签到,获得积分10
1分钟前
1分钟前
cheng完成签到 ,获得积分10
2分钟前
今后应助白华苍松采纳,获得10
2分钟前
勤qin完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
uppercrusteve完成签到,获得积分10
3分钟前
田田完成签到 ,获得积分10
3分钟前
优美的冰巧完成签到 ,获得积分10
3分钟前
娇气的天亦完成签到 ,获得积分10
4分钟前
甲壳虫完成签到 ,获得积分10
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
jenningseastera完成签到,获得积分0
4分钟前
白华苍松发布了新的文献求助20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539037
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566695
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452982