AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 天文 量子力学 物理
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:175: 103152-103152 被引量:61
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年游发布了新的文献求助10
刚刚
ZeKaWa应助KK采纳,获得10
1秒前
清秀的发夹完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
2秒前
昭明完成签到 ,获得积分10
2秒前
2秒前
AprilLeung完成签到 ,获得积分10
3秒前
3秒前
LHQ发布了新的文献求助10
4秒前
Tourist应助Kyrie采纳,获得10
4秒前
zhang完成签到 ,获得积分10
5秒前
冷静水杯发布了新的文献求助10
5秒前
刘盼红发布了新的文献求助10
5秒前
万能图书馆应助陈好采纳,获得50
5秒前
小杭76应助Ben采纳,获得10
6秒前
感动城发布了新的文献求助10
6秒前
黄姗姗发布了新的文献求助30
6秒前
FashionBoy应助缓慢耳机采纳,获得10
6秒前
NexusExplorer应助大萝贝采纳,获得10
6秒前
万能图书馆应助时舒采纳,获得30
6秒前
diguohu发布了新的文献求助10
8秒前
大个应助儒雅的翠琴采纳,获得30
9秒前
9秒前
搜集达人应助生动路人采纳,获得10
10秒前
10秒前
打打应助狂暴的蜗牛0713采纳,获得10
11秒前
11秒前
领导范儿应助迷人的千秋采纳,获得10
12秒前
12秒前
许院士发布了新的文献求助10
13秒前
爆米花应助健忘的板凳采纳,获得10
13秒前
Wy发布了新的文献求助10
14秒前
Tsuki完成签到,获得积分10
14秒前
14秒前
赵琪发布了新的文献求助10
14秒前
黄姗姗完成签到,获得积分10
15秒前
科研通AI5应助LM采纳,获得10
15秒前
ding应助黄帅比采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111526
求助须知:如何正确求助?哪些是违规求助? 4319720
关于积分的说明 13459271
捐赠科研通 4150427
什么是DOI,文献DOI怎么找? 2274173
邀请新用户注册赠送积分活动 1276148
关于科研通互助平台的介绍 1214369