亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 天文 量子力学 物理
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:175: 103152-103152 被引量:61
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
飞快的孱发布了新的文献求助10
14秒前
20秒前
小二郎应助幽默安珊采纳,获得10
21秒前
无名发布了新的文献求助10
23秒前
24秒前
30秒前
魁梧的鲂发布了新的文献求助10
31秒前
幽默安珊发布了新的文献求助10
36秒前
幽默安珊完成签到,获得积分20
46秒前
Owen应助jichenzhang2024采纳,获得10
52秒前
52秒前
西红柿有饭吃吗完成签到,获得积分10
55秒前
研友_VZG7GZ应助胖胖猪采纳,获得10
57秒前
57秒前
1分钟前
muhum完成签到 ,获得积分10
1分钟前
胖胖猪发布了新的文献求助10
1分钟前
1分钟前
99253761发布了新的文献求助10
1分钟前
魁梧的鲂完成签到,获得积分10
1分钟前
香蕉觅云应助聪明熊猫采纳,获得10
2分钟前
2分钟前
飞快的孱发布了新的文献求助10
2分钟前
无花果应助橘子味汽水采纳,获得10
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
初晴完成签到 ,获得积分10
2分钟前
2分钟前
xiaopu完成签到,获得积分10
3分钟前
AWESOME Ling完成签到 ,获得积分10
3分钟前
3分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
Daniel发布了新的文献求助200
4分钟前
丘比特应助呜呼采纳,获得10
5分钟前
5分钟前
呜呼发布了新的文献求助10
5分钟前
hahahan完成签到 ,获得积分10
5分钟前
呜呼完成签到,获得积分20
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626052
求助须知:如何正确求助?哪些是违规求助? 4025071
关于积分的说明 12458351
捐赠科研通 3710275
什么是DOI,文献DOI怎么找? 2046526
邀请新用户注册赠送积分活动 1078482
科研通“疑难数据库(出版商)”最低求助积分说明 960950