AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 天文 量子力学 物理
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:175: 103152-103152 被引量:135
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱光辉发布了新的文献求助10
刚刚
草莓屁屁完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
seal完成签到,获得积分10
2秒前
3秒前
ddd发布了新的文献求助10
3秒前
4秒前
YiyueChan完成签到,获得积分10
4秒前
4秒前
小二郎应助嘞是举仔采纳,获得30
5秒前
魔梓菌发布了新的文献求助10
5秒前
大模型应助嘞是举仔采纳,获得10
5秒前
NexusExplorer应助嘞是举仔采纳,获得10
5秒前
共享精神应助嘞是举仔采纳,获得10
5秒前
Brave发布了新的文献求助10
5秒前
研友_VZG7GZ应助彤彤彤采纳,获得10
5秒前
坦率灵槐发布了新的文献求助10
6秒前
斯文败类应助李浩然采纳,获得10
6秒前
ylyla发布了新的文献求助10
6秒前
6秒前
liu完成签到,获得积分10
7秒前
8秒前
cjl501发布了新的文献求助10
8秒前
8秒前
KYTYYDS发布了新的文献求助30
8秒前
科研通AI6应助Neonoes采纳,获得10
9秒前
张瑞雪发布了新的文献求助10
9秒前
9秒前
科研通AI6应助sterkiller采纳,获得10
10秒前
虚幻的靖柔完成签到,获得积分20
10秒前
SciGPT应助鲤鱼诗桃采纳,获得10
11秒前
Jasper应助Brave采纳,获得10
11秒前
胖胖桑发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599