AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 物理 量子力学 天文
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:175: 103152-103152 被引量:38
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
css完成签到,获得积分10
刚刚
Eliii完成签到 ,获得积分10
1秒前
YOP完成签到 ,获得积分10
2秒前
小胖完成签到 ,获得积分10
3秒前
ycw992847127完成签到,获得积分10
3秒前
makenemore完成签到,获得积分10
4秒前
111完成签到,获得积分10
6秒前
Deceiver完成签到,获得积分10
7秒前
7秒前
羽宇完成签到,获得积分0
8秒前
明亮师完成签到 ,获得积分10
9秒前
12秒前
张清泉完成签到,获得积分10
12秒前
13秒前
勤恳的猕猴桃完成签到,获得积分10
14秒前
风趣霆完成签到,获得积分10
15秒前
wyz完成签到 ,获得积分10
16秒前
赧赧发布了新的文献求助10
17秒前
ao黛雷赫完成签到,获得积分10
17秒前
17秒前
蓝天碧海小西服完成签到,获得积分0
19秒前
Regina完成签到 ,获得积分10
19秒前
XIEMIN完成签到,获得积分10
19秒前
要减肥的chao完成签到,获得积分10
19秒前
123完成签到,获得积分10
20秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
20秒前
小左完成签到 ,获得积分10
22秒前
1820801018完成签到,获得积分10
22秒前
自觉的傥完成签到,获得积分10
24秒前
yxy完成签到,获得积分10
24秒前
24秒前
lee1992完成签到,获得积分10
25秒前
Lucas应助滑翔的咸鱼采纳,获得10
25秒前
Mutsu完成签到,获得积分10
25秒前
iY完成签到 ,获得积分10
25秒前
勤奋曼雁完成签到 ,获得积分10
25秒前
FashionBoy应助零渊采纳,获得10
25秒前
想打出冰球的太阳系完成签到,获得积分10
26秒前
Ryan完成签到,获得积分10
27秒前
lbx完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150649
求助须知:如何正确求助?哪些是违规求助? 2802188
关于积分的说明 7846347
捐赠科研通 2459500
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628818
版权声明 601757