AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods

循环神经网络 深度学习 弹道 人工智能 计算机科学 机器学习 随机森林 支持向量机 人工神经网络 高斯过程 高斯分布 天文 量子力学 物理
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:175: 103152-103152 被引量:61
标识
DOI:10.1016/j.tre.2023.103152
摘要

Maritime transport faces new safety challenges in an increasingly complex traffic environment caused by large-scale and high-speed ships, particularly with the introduction of intelligent and autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship trajectory prediction can effectively aid in identifying abnormal ship behaviours and reducing maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is widely recognised as one of the critical technologies for realising safe autonomous navigation. The prediction methods and their performance are the key factors for future safe and automatic shipping. Currently, ship trajectory prediction lacks the real performance measurement and analysis of different algorithms, including classical machine learning and emerging deep learning methods. This paper aims to systematically analyse the performance of ship trajectory prediction methods and pioneer experimental tests to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated systems. To do so, five machine learning methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from the state-of-the-art literature review and then employed to implement the trajectory prediction and compare their prediction performance in the real world. Three AIS datasets are collected from the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian port). They are selected to test and analyse the performance of all twelve methods based on six evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory prediction methods in detail. The experimental results provide a novel perspective, comparison, and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of each method in different maritime traffic scenarios, but also makes significant contributions to maritime safety and autonomous shipping development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Somnolence咩完成签到,获得积分10
刚刚
刚刚
岳阳张震岳完成签到,获得积分10
1秒前
Grondwet完成签到,获得积分10
1秒前
落尽海完成签到,获得积分10
2秒前
kekeke发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
秋澍壆发布了新的文献求助10
3秒前
Niejianjie发布了新的文献求助10
4秒前
li12345852456完成签到,获得积分10
4秒前
光亮外套发布了新的文献求助10
4秒前
5秒前
酷波zai发布了新的文献求助10
5秒前
Karen_Liu发布了新的文献求助10
6秒前
畅快蓝血发布了新的文献求助10
6秒前
落尽海发布了新的文献求助10
7秒前
8秒前
oeo发布了新的文献求助10
8秒前
li12345852456发布了新的文献求助10
9秒前
MORNING发布了新的文献求助10
9秒前
Function发布了新的文献求助10
10秒前
Keira_Chang完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
浮游应助瘦瘦的背包采纳,获得10
11秒前
13秒前
Akim应助如意元霜采纳,获得10
14秒前
砼砼发布了新的文献求助10
14秒前
张张张发布了新的文献求助10
14秒前
Miracle_wh完成签到 ,获得积分10
15秒前
15秒前
15秒前
光亮外套完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
卷aaaa发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353755
求助须知:如何正确求助?哪些是违规求助? 4486330
关于积分的说明 13965956
捐赠科研通 4386675
什么是DOI,文献DOI怎么找? 2410020
邀请新用户注册赠送积分活动 1402328
关于科研通互助平台的介绍 1376129