Multi-Task Momentum Distillation for Multimodal Sentiment Analysis

计算机科学 可解释性 模式 人工智能 机器学习 代表(政治) 模态(人机交互) 情绪分析 任务(项目管理) 多模式学习 自然语言处理 社会科学 管理 社会学 政治 政治学 法学 经济
作者
Ronghao Lin,Haifeng Hu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:5
标识
DOI:10.1109/taffc.2023.3282410
摘要

In the field of Multimodal Sentiment Analysis (MSA), the prevailing methods are devoted to developing intricate network architectures to capture the intra- and inter-modal dynamics, which necessitates numerous parameters and poses more difficulties in terms of interpretability in multimodal modeling. Besides, the heterogeneous nature of multiple modalities (text, audio, and vision) introduces significant modality gaps, thereby making multimodal representation learning an ongoing challenge. To address the aforementioned issues, by considering the learning process of modalities as multiple subtasks, we propose a novel approach named Multi-Task Momentum Distillation (MTMD) which succeeds in reducing the gap among different modalities. Specifically, according to the abundance of semantic information, we treat the subtasks of textual and multimodal representations as the teacher networks while the subtasks of acoustic and visual representations as the student ones to present knowledge distillation, which transfers the sentiment-related knowledge guided by the regression and classification subtasks. Additionally, we adopt unimodal momentum models to explore modality-specific knowledge deeply and employ adaptive momentum fusion factors to learn a robust multimodal representation. Furthermore, we provide a theoretical perspective of mutual information maximization by interpreting MTMD as generating sentiment-related views in various ways. Extensive experiments illustrate the superiority of our approach compared with the state-of-the-art methods in MSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪迦奥特曼完成签到,获得积分10
刚刚
CipherSage应助羽羊周周采纳,获得10
1秒前
1秒前
bkagyin应助芋泥橙子采纳,获得10
1秒前
出现在uwuh完成签到,获得积分10
1秒前
毛儿豆儿完成签到,获得积分10
2秒前
小乌龟完成签到,获得积分10
3秒前
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
小乌龟发布了新的文献求助10
6秒前
bkagyin应助科研通管家采纳,获得10
7秒前
xxxxx应助科研通管家采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
深情安青应助可耐的靖琪采纳,获得10
9秒前
烟花应助mirror采纳,获得30
11秒前
瓷儿发布了新的文献求助10
12秒前
abib完成签到,获得积分10
12秒前
12秒前
Gone完成签到,获得积分10
13秒前
芦同学完成签到,获得积分10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411