化学
色谱法
萃取(化学)
膜
固相萃取
生物化学
作者
Nicholas Tryon-Tasson,Donghyun Ryoo,Philip Eor,Jared L. Anderson
标识
DOI:10.1016/j.chroma.2023.464133
摘要
The use of silver(I) ions in chemical separations, also known as argentation separations, is a powerful approach for the selective separation and analysis of many natural and synthetic organic compounds. In this review, a comprehensive discussion of the most common argentation separation techniques, including argentation-liquid chromatography (Ag-LC), argentation-gas chromatography (Ag-GC), argentation-facilitated transport membranes (Ag-FTMs), and argentation-solid phase extraction (Ag-SPE) is provided. For each of these techniques, notable advancements, optimized separations, and innovative applications are discussed. The review begins with an explanation of the fundamental chemistry underlying argentation separations, mainly the reversible π-complexation between silver(I) ions and carbon-carbon double bonds. Within Ag-LC, the use of silver(I) ions in thin-layer chromatography, high-performance liquid chromatography, as well as preparative LC are explored. This discussion focuses on how silver(I) ions are employed in the stationary and mobile phase to separate unsaturated compounds. For Ag-GC and Ag-FTMs, different silver compounds and supporting media are discussed, often with relation to olefin-paraffin separations. Ag-SPE has been widely employed for the selective extraction of unsaturated compounds from complex matrices in sample preparation. This comprehensive review of Ag-LC, Ag-GC, Ag-FTMs, and Ag-SPE techniques emphasizes the immense potential of argentation separations in separations science and serves as a valuable resource for researchers seeking to learn, optimize, and utilize argentation separations.
科研通智能强力驱动
Strongly Powered by AbleSci AI