Sea-YOLOv5s: A UAV image-based model for detecting objects in SeaDronesSee dataset

计算机科学 人工智能 目标检测 块(置换群论) 搜救 特征(语言学) 计算机视觉 对象(语法) 模式识别(心理学) 数据挖掘 机器人 几何学 数学 语言学 哲学
作者
Xiaotian Wang,Zhizhong Pan,Ningxin He,Tiegang Gao
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (3): 3575-3586
标识
DOI:10.3233/jifs-230200
摘要

Unmanned aerial vehicles (UAVs) play a crucial role in maritime search and rescue missions, capturing images of open water scenarios and assisting in object detection. Previous object detection models have mainly focused on general scenarios. However, existing object detection models have mainly focused on general scenarios, while images captured by UAVs in vast ocean scenarios often contain numerous small objects that significantly degrade the performance of the original models. To address this challenge, we propose a model that can automatically detect objects in images captured by UAVs during maritime search and rescue missions. Our approach involves designing a new detection head with higher resolution feature maps and more comprehensive feature information to improve the detection of small objects. Additionally, we integrate Swin Transformer blocks into the small object detection head, which can improve the model’s ability to obtain abundant contextual information and thus improves the model’s ability to detect small objects. Moreover, we fuse the Convolutional Block Attention Model into the small object detection head to help the model focus on important features. Finally, we adopt a model ensemble strategy to further improve the mean average precision (mAP). Our proposed model achieves a 4.05% improvement in mAP compared to the baseline model. Furthermore, our model outperforms the previous state-of-the-art model on the SeaDronesSee dataset in terms of fewer parameters, lower training costs, and higher mAP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
can完成签到,获得积分10
1秒前
99完成签到,获得积分10
1秒前
顾矜应助conjee采纳,获得30
2秒前
丘比特应助Hopelife采纳,获得10
2秒前
小二郎应助shinn采纳,获得10
2秒前
贪玩菲音完成签到,获得积分10
3秒前
赘婿应助笑点低的丹烟采纳,获得10
3秒前
洋葱王子发布了新的文献求助10
3秒前
777发布了新的文献求助10
3秒前
5秒前
坐忘道发布了新的文献求助10
5秒前
Terry完成签到,获得积分10
5秒前
7秒前
轻松香寒完成签到,获得积分10
7秒前
Anqi完成签到 ,获得积分10
8秒前
热心市民小红花应助swy212采纳,获得30
9秒前
12秒前
12秒前
Rondab应助读博ing采纳,获得10
13秒前
13秒前
充电宝应助文文采纳,获得10
14秒前
搜集达人应助洋葱王子采纳,获得10
14秒前
14秒前
善学以致用应助宁天采纳,获得10
14秒前
欢喜小蚂蚁完成签到 ,获得积分10
15秒前
shinn发布了新的文献求助10
16秒前
Owen应助努力采纳,获得10
16秒前
16秒前
假发君完成签到,获得积分10
17秒前
稳重的小刺猬完成签到,获得积分10
18秒前
李爱国应助医学牲采纳,获得10
20秒前
22秒前
Ccc发布了新的文献求助10
22秒前
852应助永恒采纳,获得10
23秒前
26秒前
niceday123完成签到,获得积分20
27秒前
www完成签到,获得积分10
27秒前
任性踏歌应助坤舆探骊者采纳,获得10
29秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303