Dual symmetry-protected bound states in the continuum enabled by toroidal dipoles in dielectric metamaterials

多极展开 物理 超材料 诺共振 偶极子 环面 束缚态 量子力学 等离子体子 等离子体
作者
Xue Han,Xinyue Xiong,Weihua Wang
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:38 (20)
标识
DOI:10.1142/s021797922450259x
摘要

Bound states in the continuum (BICs) are a special kind of resonant states that remain localized even though they coexist with a continuous spectrum of radiating waves. They have already emerged as an important design principle for creating systems with high-quality ([Formula: see text] factor states to enhance light–matter interaction. Many approaches have been proposed to achieve BICs, but it is still of great challenge to design multiple BICs simultaneously, and especially working at terahertz (THz) frequencies. In this paper, we propose an all-dielectric metamaterial, consisting of four hollow cylinders in each unit cell. We show dual BICs exist in such a simple structure, and as breaking the symmetry via varying the inner radius of two diagonal cylinders, they will turn to quasi-BICs with high yet finite Q-factor. These quasi-BICs are manifested themselves as two new dips in the transmission spectrum, of which the resonance shapes can be well described by the Fano formula with a few fitting parameters. We find the evolution of their Q-factors still follows the simple linear relationship with respect to the inverse square of the asymmetry parameter. Based on the multipole decomposition method, two BICs are further investigated to show different multipole components for them. Interestingly, the higher frequency BIC is closely related to the excitation of toroidal dipole (TD), which will split into two TDs as breaking the symmetry. The proposed metamaterial provides an alternative platform to merge the physics of BICs, Fano, and TD, and to pave the way for potential device applications (since the states of extremely high-Q factor).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjjjjj发布了新的文献求助30
2秒前
3秒前
伯赏诗霜发布了新的文献求助10
3秒前
糟糕的鹏飞完成签到 ,获得积分10
4秒前
4秒前
欢呼凡旋完成签到,获得积分10
5秒前
韩邹光完成签到,获得积分10
7秒前
xg发布了新的文献求助10
7秒前
8秒前
dktrrrr完成签到,获得积分10
8秒前
季生完成签到,获得积分10
11秒前
徐徐完成签到,获得积分10
11秒前
12秒前
12秒前
haku完成签到,获得积分10
14秒前
可爱的函函应助laodie采纳,获得10
16秒前
Singularity应助忆楠采纳,获得10
17秒前
18秒前
请叫我风吹麦浪应助PengHu采纳,获得30
19秒前
jjjjjj完成签到,获得积分10
19秒前
凝子老师发布了新的文献求助10
21秒前
21秒前
橙子fy16_发布了新的文献求助10
23秒前
cookie完成签到,获得积分10
23秒前
柒柒的小熊完成签到,获得积分10
24秒前
24秒前
Hello应助萌之痴痴采纳,获得10
25秒前
hahaer完成签到,获得积分10
27秒前
领导范儿应助失眠虔纹采纳,获得10
28秒前
29秒前
Owen应助凝子老师采纳,获得10
32秒前
32秒前
南宫炽滔完成签到 ,获得积分10
34秒前
34秒前
丘比特应助飞羽采纳,获得10
35秒前
沙拉发布了新的文献求助10
35秒前
36秒前
37秒前
椰子糖完成签到 ,获得积分10
38秒前
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849