光催化
材料科学
纳米片
降级(电信)
催化作用
化学工程
吸附
异质结
铋
复合数
光致发光
肖特基势垒
纳米技术
复合材料
光电子学
冶金
化学
有机化学
工程类
二极管
电信
计算机科学
作者
Lei Ying,Mingkun Wu,Zhen Xie,Qiuyan Meng,Jianfeng Su,Yirui Zhang,Bin Li,Lihui Dong
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2023-05-24
卷期号:6 (11): 9697-9706
被引量:1
标识
DOI:10.1021/acsanm.3c01385
摘要
Modification of morphological engineering to enhance photocatalytic activity has been considered an effective strategy. However, effective modification of the catalyst nanosheet thickness remains a difficult challenge to control. Here, we have synthesized Sn-TiO2/BiOBr composite photocatalysts by a one-pot method. With the addition of Sn-TiO2, the flakes of BiOBr gradually became thinner, resulting in more surface reaction site, and Sn-TiO2 clearly increased the adsorption capacity of the composite catalyst. The degradation efficiency of the prepared Sn-TiO2/BiOBr (the atomic ratio of titanium/bismuth 1:1) was 98% and 80% for TC-HCl and CIP, respectively, showing good photocatalytic performance. Furthermore, the radical trapping experiments revealed that h+ and •O2– play an important role in the Sn-TiO2/BiOBr system. Photoelectrochemical tests and photoluminescence confirm that the thin sheets can significantly improve carrier migration efficiency in Sn-TiO2/BiOBr heterojunctions. Finally, the degradation mechanism of the Sn-TiO2/BiOBr system was elucidated using UV-DRs and Mott–Schottky curves. Experimental analysis shows that modulating the thickness of BiOBr nanosheets with Sn-TiO2 can promote the exposure of surface reaction sites, can enhance their light adsorption ability and carrier mobility, and is a promising method for improving photocatalytic efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI