Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations

计算机科学 概化理论 一致性(知识库) 代表(政治) 人工智能 语义学(计算机科学) 特征(语言学) 特征学习 自然语言处理 动作(物理) 骨架(计算机编程) 聚类分析 模式识别(心理学) 机器学习 语言学 数学 统计 哲学 物理 法学 程序设计语言 量子力学 政治 政治学
作者
Jiahang Zhang,Lilang Lin,Jiaying Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (3): 3427-3435 被引量:23
标识
DOI:10.1609/aaai.v37i3.25451
摘要

Contrastive learning has been proven beneficial for self-supervised skeleton-based action recognition. Most contrastive learning methods utilize carefully designed augmentations to generate different movement patterns of skeletons for the same semantics. However, it is still a pending issue to apply strong augmentations, which distort the images/skeletons’ structures and cause semantic loss, due to their resulting unstable training. In this paper, we investigate the potential of adopting strong augmentations and propose a general hierarchical consistent contrastive learning framework (HiCLR) for skeleton-based action recognition. Specifically, we first design a gradual growing augmentation policy to generate multiple ordered positive pairs, which guide to achieve the consistency of the learned representation from different views. Then, an asymmetric loss is proposed to enforce the hierarchical consistency via a directional clustering operation in the feature space, pulling the representations from strongly augmented views closer to those from weakly augmented views for better generalizability. Meanwhile, we propose and evaluate three kinds of strong augmentations for 3D skeletons to demonstrate the effectiveness of our method. Extensive experiments show that HiCLR outperforms the state-of-the-art methods notably on three large-scale datasets, i.e., NTU60, NTU120, and PKUMMD. Our project is publicly available at: https://jhang2020.github.io/Projects/HiCLR/HiCLR.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗寇发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
丹三发布了新的文献求助10
11秒前
大个应助次天使之城采纳,获得10
13秒前
重要文轩完成签到,获得积分10
16秒前
17秒前
丘比特应助Liben采纳,获得10
20秒前
21秒前
田様应助歪比巴卜采纳,获得10
21秒前
学术狗完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
wanci应助子V采纳,获得30
24秒前
lilili发布了新的文献求助10
26秒前
霸气雪珍发布了新的文献求助10
26秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
mhl11应助科研通管家采纳,获得20
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
狗狗应助科研通管家采纳,获得30
29秒前
今后应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
30秒前
mhl11应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得30
30秒前
30秒前
mhl11应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
31秒前
mhl11应助科研通管家采纳,获得10
31秒前
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得30
31秒前
852应助科研通管家采纳,获得10
31秒前
32秒前
32秒前
无花果应助科研通管家采纳,获得10
32秒前
iNk应助科研通管家采纳,获得20
32秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343067
求助须知:如何正确求助?哪些是违规求助? 2970100
关于积分的说明 8642882
捐赠科研通 2650096
什么是DOI,文献DOI怎么找? 1451115
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407