Layer-refined Graph Convolutional Networks for Recommendation

计算机科学 图形 平滑的 节点(物理) 理论计算机科学 同性恋 推荐系统 算法 数据挖掘 机器学习 数学 结构工程 组合数学 工程类 计算机视觉
作者
Xin Zhou,Donghui Lin,Yong Liu,Miao Chen
标识
DOI:10.1109/icde55515.2023.00100
摘要

Recommendation models utilizing Graph Convolutional Networks (GCNs) have achieved state-of-the-art performance, as they can integrate both the node information and the topological structure of the user-item interaction graph. However, these GCN-based recommendation models not only suffer from over-smoothing when stacking too many layers but also bear performance degeneration resulting from the existence of noise in user-item interactions. In this paper, we first identify a recommendation dilemma of over-smoothing and solution collapsing in current GCN-based models. Specifically, these models usually aggregate all layer embeddings for node updating and achieve their best recommendation performance within a few layers because of over-smoothing. Conversely, if we place learnable weights on layer embeddings for node updating, the weight space will always collapse to a fixed point, at which the weighting of the ego layer almost holds all. We propose a layer-refined GCN model, dubbed LayerGCN, that refines layer representations during information propagation and node updating of GCN. Moreover, previous GCN-based recommendation models aggregate all incoming information from neighbors without distinguishing the noise nodes, which deteriorates the recommendation performance. Our model further prunes the edges of the user-item interaction graph following a degree-sensitive probability instead of the uniform distribution. Experimental results show that the proposed model outperforms the state-of-the-art models significantly on four public datasets with fast training convergence. The implementation code of the proposed method is available at https://github.com/enoche/ImRec.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李kh发布了新的文献求助30
1秒前
螺旋向上发布了新的文献求助30
1秒前
1秒前
九姑娘完成签到 ,获得积分10
3秒前
Akim应助MissXia采纳,获得10
3秒前
烟花应助仁谷居士采纳,获得10
4秒前
nana完成签到,获得积分10
4秒前
QVQ发布了新的文献求助10
4秒前
5秒前
香蕉觅云应助正直的沛凝采纳,获得10
6秒前
cssfsa发布了新的文献求助10
6秒前
lv完成签到,获得积分10
7秒前
AAA发布了新的文献求助10
7秒前
Di完成签到,获得积分10
8秒前
LiZhao完成签到,获得积分10
8秒前
8秒前
Jas发布了新的文献求助10
9秒前
研友_bZzO08完成签到,获得积分10
9秒前
9秒前
九千七完成签到,获得积分20
9秒前
10秒前
10秒前
张志杰应助科研助理采纳,获得10
10秒前
善学以致用应助cc采纳,获得10
10秒前
10秒前
小二郎应助霸王宝宝蛋采纳,获得10
12秒前
NICAI应助张真肇采纳,获得10
12秒前
12秒前
12秒前
hello完成签到,获得积分0
14秒前
Robin发布了新的文献求助10
14秒前
华仔应助李kh采纳,获得10
14秒前
DONG发布了新的文献求助10
16秒前
拉长的觅儿完成签到,获得积分10
17秒前
19秒前
19秒前
WuYiHHH完成签到,获得积分10
19秒前
华仔应助亦兮采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540584
求助须知:如何正确求助?哪些是违规求助? 4627210
关于积分的说明 14603009
捐赠科研通 4568280
什么是DOI,文献DOI怎么找? 2504441
邀请新用户注册赠送积分活动 1482032
关于科研通互助平台的介绍 1453645