亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Layer-refined Graph Convolutional Networks for Recommendation

计算机科学 图形 平滑的 节点(物理) 理论计算机科学 同性恋 推荐系统 算法 数据挖掘 机器学习 数学 结构工程 组合数学 工程类 计算机视觉
作者
Xin Zhou,Donghui Lin,Yong Liu,Miao Chen
标识
DOI:10.1109/icde55515.2023.00100
摘要

Recommendation models utilizing Graph Convolutional Networks (GCNs) have achieved state-of-the-art performance, as they can integrate both the node information and the topological structure of the user-item interaction graph. However, these GCN-based recommendation models not only suffer from over-smoothing when stacking too many layers but also bear performance degeneration resulting from the existence of noise in user-item interactions. In this paper, we first identify a recommendation dilemma of over-smoothing and solution collapsing in current GCN-based models. Specifically, these models usually aggregate all layer embeddings for node updating and achieve their best recommendation performance within a few layers because of over-smoothing. Conversely, if we place learnable weights on layer embeddings for node updating, the weight space will always collapse to a fixed point, at which the weighting of the ego layer almost holds all. We propose a layer-refined GCN model, dubbed LayerGCN, that refines layer representations during information propagation and node updating of GCN. Moreover, previous GCN-based recommendation models aggregate all incoming information from neighbors without distinguishing the noise nodes, which deteriorates the recommendation performance. Our model further prunes the edges of the user-item interaction graph following a degree-sensitive probability instead of the uniform distribution. Experimental results show that the proposed model outperforms the state-of-the-art models significantly on four public datasets with fast training convergence. The implementation code of the proposed method is available at https://github.com/enoche/ImRec.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
JLL丽丽完成签到,获得积分10
2秒前
2秒前
你一笑好好看完成签到 ,获得积分10
3秒前
3秒前
4秒前
香蕉觅云应助顶刊我来了采纳,获得10
4秒前
无辜的黄豆完成签到 ,获得积分10
5秒前
lsh发布了新的文献求助10
6秒前
tingting发布了新的文献求助10
6秒前
marshyyy完成签到,获得积分10
8秒前
完美世界应助JLL丽丽采纳,获得10
11秒前
思源应助Lee采纳,获得10
12秒前
dana完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
15秒前
16秒前
17秒前
qq158014169发布了新的文献求助10
18秒前
19秒前
郭大侠发布了新的文献求助10
23秒前
Ashore发布了新的文献求助10
23秒前
顶刊我来了完成签到,获得积分10
30秒前
32秒前
5C完成签到 ,获得积分10
32秒前
singber发布了新的文献求助30
33秒前
Rinamamiya完成签到,获得积分10
35秒前
36秒前
39秒前
研友_8yPY0Z完成签到,获得积分10
40秒前
俭朴蜜蜂完成签到 ,获得积分10
44秒前
45秒前
我是老大应助日初采纳,获得10
47秒前
48秒前
NLJY完成签到,获得积分10
52秒前
52秒前
山山完成签到 ,获得积分10
54秒前
天堂鸟完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283