Layer-refined Graph Convolutional Networks for Recommendation

计算机科学 图形 平滑的 节点(物理) 理论计算机科学 同性恋 推荐系统 算法 数据挖掘 机器学习 数学 结构工程 组合数学 工程类 计算机视觉
作者
Xin Zhou,Donghui Lin,Yong Liu,Miao Chen
标识
DOI:10.1109/icde55515.2023.00100
摘要

Recommendation models utilizing Graph Convolutional Networks (GCNs) have achieved state-of-the-art performance, as they can integrate both the node information and the topological structure of the user-item interaction graph. However, these GCN-based recommendation models not only suffer from over-smoothing when stacking too many layers but also bear performance degeneration resulting from the existence of noise in user-item interactions. In this paper, we first identify a recommendation dilemma of over-smoothing and solution collapsing in current GCN-based models. Specifically, these models usually aggregate all layer embeddings for node updating and achieve their best recommendation performance within a few layers because of over-smoothing. Conversely, if we place learnable weights on layer embeddings for node updating, the weight space will always collapse to a fixed point, at which the weighting of the ego layer almost holds all. We propose a layer-refined GCN model, dubbed LayerGCN, that refines layer representations during information propagation and node updating of GCN. Moreover, previous GCN-based recommendation models aggregate all incoming information from neighbors without distinguishing the noise nodes, which deteriorates the recommendation performance. Our model further prunes the edges of the user-item interaction graph following a degree-sensitive probability instead of the uniform distribution. Experimental results show that the proposed model outperforms the state-of-the-art models significantly on four public datasets with fast training convergence. The implementation code of the proposed method is available at https://github.com/enoche/ImRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐蛋挞发布了新的文献求助30
刚刚
都是知识点呐完成签到 ,获得积分10
刚刚
俏皮听寒给俏皮听寒的求助进行了留言
刚刚
香蕉觅云应助Han采纳,获得10
刚刚
嗯嗯完成签到 ,获得积分10
1秒前
927发布了新的文献求助10
2秒前
zhabgyyy发布了新的文献求助10
2秒前
完美世界应助周健采纳,获得30
3秒前
3秒前
同志发布了新的文献求助10
5秒前
6秒前
6秒前
xbj笑哈哈完成签到 ,获得积分10
6秒前
英俊的铭应助Venus采纳,获得10
6秒前
7秒前
8秒前
dawn发布了新的文献求助10
8秒前
诸葛藏藏完成签到,获得积分10
9秒前
可乐不加冰完成签到 ,获得积分10
9秒前
10秒前
裴荣华完成签到,获得积分10
10秒前
zzzz发布了新的文献求助20
10秒前
柠檬气泡饮完成签到,获得积分10
11秒前
11秒前
清脆如娆完成签到 ,获得积分10
11秒前
carrier_hc完成签到,获得积分0
12秒前
12秒前
万能图书馆应助蓝色冰芯采纳,获得10
13秒前
蓝桉完成签到,获得积分10
13秒前
杨皓文发布了新的文献求助10
13秒前
Mottri发布了新的文献求助10
13秒前
跳跃盼波发布了新的文献求助10
14秒前
疑夕发布了新的文献求助10
15秒前
神唐1发布了新的文献求助20
15秒前
16秒前
llay发布了新的文献求助10
16秒前
科研通AI5应助明亮如花采纳,获得10
17秒前
星辰大海应助zhabgyyy采纳,获得10
17秒前
fanhaomeng发布了新的文献求助10
17秒前
科研通AI5应助min采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182571
求助须知:如何正确求助?哪些是违规求助? 4369185
关于积分的说明 13605156
捐赠科研通 4220788
什么是DOI,文献DOI怎么找? 2314874
邀请新用户注册赠送积分活动 1313640
关于科研通互助平台的介绍 1262301