Highly dynamic X-ray image enhancement based on generative adversarial network

计算机科学 人工智能 鉴别器 图像(数学) 发电机(电路理论) 计算机视觉 图像渐变 对比度(视觉) 索贝尔算子 特征(语言学) 特征检测(计算机视觉) 模式识别(心理学) 边缘增强 频道(广播) GSM演进的增强数据速率 图像处理 边缘检测 物理 功率(物理) 哲学 探测器 电信 量子力学 语言学 计算机网络
作者
Hongxu Yan,Yi Liu,X. H. Ding,Haowen Zhang,Boqin Qiang,Zhang Peng-cheng,Zhiguo Gui
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:18 (07): P07037-P07037 被引量:2
标识
DOI:10.1088/1748-0221/18/07/p07037
摘要

Abstract When using X-ray to detect industrial workpieces, the images obtained frequently have low contrast, making it difficult to detect defects. This paper proposes a GAN-based X-ray image enhancement network to address this issue. In detail, the X-ray image is concatenated with its antiphase image (as an exposure mask) as the input image, and a trainable Sobel operator is used to extract the edge features of the input image. The input image and edge features are then concatenated and fed into the U-Net generator to be enhanced. The spatial and channel attention models are used to adjust feature weights in U-Net, and a detail extraction network is designed to extract detail features from the input X-ray image. Furthermore, the extracted detail features are fused with the image by the generator after contrast stretching to produce the final enhanced image. Finally, a global-local discriminator is used to discriminate the authenticity of the image so that the contrast of the final obtained image is improved and the details are highlighted. Following experimental validation, the method proposed in this paper has a significant enhancement effect on industrial X-ray images and performs well in terms of enhancing image contrast and highlighting image details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘幼旋1完成签到,获得积分10
刚刚
无奈的胡萝卜完成签到,获得积分10
1秒前
1秒前
科研通AI5应助优雅的琳采纳,获得10
1秒前
机灵的囧完成签到,获得积分10
2秒前
时光完成签到,获得积分10
2秒前
七大洋的风完成签到,获得积分10
2秒前
左丘幼旋1发布了新的文献求助10
3秒前
amumu发布了新的文献求助10
3秒前
三金发布了新的文献求助10
3秒前
5秒前
kingwill应助明天更好采纳,获得20
5秒前
6秒前
乐乐应助gaos采纳,获得10
6秒前
lzy完成签到,获得积分10
6秒前
阿烨发布了新的文献求助10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
gcc应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
小二郎应助sure采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
yin完成签到,获得积分10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678