CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 航空航天工程 系统工程 几何学
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
hhh123发布了新的文献求助10
刚刚
1秒前
my发布了新的文献求助10
2秒前
2秒前
2秒前
深情安青应助包子采纳,获得10
3秒前
研友_VZG7GZ应助柔弱诗筠采纳,获得10
4秒前
kilo完成签到 ,获得积分10
4秒前
岗岗完成签到,获得积分10
4秒前
机智的初柳完成签到,获得积分10
5秒前
细腻的三德完成签到,获得积分10
6秒前
SciGPT应助满意谷秋采纳,获得10
6秒前
shuo完成签到,获得积分10
7秒前
ww发布了新的文献求助10
7秒前
7秒前
Hvginn发布了新的文献求助30
8秒前
8秒前
9秒前
炙热的荔枝完成签到 ,获得积分20
10秒前
上官若男应助淡蓝色采纳,获得10
10秒前
天真思雁完成签到 ,获得积分10
10秒前
10秒前
Orange应助儒雅沛蓝采纳,获得10
11秒前
12秒前
siri1313发布了新的文献求助10
12秒前
隐形曼青应助hydrazine采纳,获得10
13秒前
13秒前
orixero应助yshog采纳,获得10
14秒前
14秒前
15秒前
代杰居然发布了新的文献求助10
15秒前
欠虐宝宝发布了新的文献求助10
15秒前
16秒前
peipei发布了新的文献求助10
17秒前
Hvginn完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791