CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 航空航天工程 系统工程 几何学
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可恶啊完成签到,获得积分10
刚刚
无极微光应助LLLi采纳,获得20
刚刚
刚刚
lalala发布了新的文献求助20
1秒前
研友_VZG7GZ应助箱子采纳,获得10
1秒前
李健应助抹缇卡采纳,获得30
1秒前
SciGPT应助自觉的溪灵采纳,获得10
2秒前
森水垚发布了新的文献求助10
2秒前
小二郎应助jiyuan采纳,获得10
2秒前
FashionBoy应助rqf采纳,获得10
2秒前
饺子完成签到,获得积分10
2秒前
2秒前
RX信完成签到 ,获得积分10
2秒前
3秒前
太阳发布了新的文献求助10
3秒前
寒松发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助自觉紫安采纳,获得10
6秒前
6秒前
6秒前
6秒前
Bowen发布了新的文献求助10
6秒前
迷路的迎蕾完成签到,获得积分10
7秒前
xiao双月完成签到,获得积分10
7秒前
8秒前
10秒前
英姑应助LALA采纳,获得10
10秒前
lameliu发布了新的文献求助10
10秒前
润柏海完成签到 ,获得积分10
11秒前
11秒前
c7发布了新的文献求助10
11秒前
无语的背包完成签到,获得积分10
13秒前
安生发布了新的文献求助10
13秒前
13秒前
CR7应助迷路的迎蕾采纳,获得20
14秒前
47吃不够yu发布了新的文献求助10
14秒前
15秒前
16秒前
FnDs完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589279
求助须知:如何正确求助?哪些是违规求助? 4674065
关于积分的说明 14791491
捐赠科研通 4628070
什么是DOI,文献DOI怎么找? 2532220
邀请新用户注册赠送积分活动 1500838
关于科研通互助平台的介绍 1468437