亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 航空航天工程 系统工程 几何学
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
4秒前
小黑不黑发布了新的文献求助10
10秒前
啵子发布了新的文献求助10
10秒前
无情的踏歌应助雪白师采纳,获得100
12秒前
LingC完成签到,获得积分10
13秒前
13秒前
小蘑菇应助杨伊瑞采纳,获得10
15秒前
甘sir完成签到 ,获得积分10
16秒前
皓月清风完成签到,获得积分10
18秒前
天天天晴完成签到 ,获得积分10
18秒前
赵vv发布了新的文献求助10
21秒前
科研扫地僧完成签到,获得积分10
22秒前
24秒前
深情安青应助习惯过了头采纳,获得10
25秒前
零慧发布了新的文献求助10
25秒前
啵子完成签到,获得积分10
25秒前
29秒前
impending完成签到,获得积分10
29秒前
32秒前
华仔应助ycy采纳,获得10
33秒前
34秒前
夜行完成签到,获得积分10
37秒前
可爱的函函应助社牛小柯采纳,获得10
38秒前
39秒前
44秒前
45秒前
47秒前
爆米花应助皓月清风采纳,获得10
47秒前
47秒前
48秒前
王秋吟完成签到,获得积分10
48秒前
Luckyz完成签到 ,获得积分10
50秒前
零慧完成签到,获得积分10
50秒前
任无施完成签到,获得积分10
50秒前
ycy发布了新的文献求助10
51秒前
最好完成签到 ,获得积分10
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067