CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 航空航天工程 系统工程 几何学
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shh完成签到,获得积分10
1秒前
hellohql完成签到,获得积分10
1秒前
2秒前
东方幼旋发布了新的文献求助10
3秒前
嘘ww完成签到,获得积分10
3秒前
3秒前
prisfanstein完成签到,获得积分10
3秒前
4秒前
Wander发布了新的文献求助10
4秒前
glj应助zz采纳,获得50
5秒前
orixero应助xl采纳,获得10
5秒前
asdfg123发布了新的文献求助10
5秒前
胡萝卜和小灰兔关注了科研通微信公众号
5秒前
6秒前
怦然心动完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
脑洞疼应助失眠的水云采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
完美世界应助月亮采纳,获得10
8秒前
8秒前
duxh123完成签到 ,获得积分10
8秒前
YE完成签到,获得积分10
9秒前
10秒前
爆米花应助快乐的安珊采纳,获得10
10秒前
黄婷萱留下了新的社区评论
10秒前
李昕123发布了新的文献求助10
11秒前
平淡的钢笔完成签到,获得积分10
11秒前
Yangon发布了新的文献求助10
12秒前
zyy0910完成签到,获得积分10
12秒前
glj应助xstar采纳,获得10
13秒前
浮游应助爱笑的冷风采纳,获得10
13秒前
wangrr发布了新的文献求助10
13秒前
受伤幻桃发布了新的文献求助10
14秒前
乐观凝荷发布了新的文献求助10
14秒前
冷傲的太英完成签到 ,获得积分10
14秒前
渠建武完成签到 ,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801