CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 航空航天工程 系统工程 几何学
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
impala发布了新的文献求助10
1秒前
1秒前
科研通AI5应助syk采纳,获得10
1秒前
隐形曼青应助耍酷含芙采纳,获得10
1秒前
云桑发布了新的文献求助10
1秒前
秀儿发布了新的文献求助10
2秒前
霸气的若翠完成签到,获得积分10
2秒前
羽毛发布了新的文献求助10
2秒前
852应助田小姐采纳,获得10
2秒前
明亮天抒完成签到,获得积分10
2秒前
久9发布了新的文献求助10
2秒前
完美世界应助clevenx采纳,获得10
2秒前
白昼潜行完成签到,获得积分10
3秒前
zwy109发布了新的文献求助10
3秒前
linmo发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
从容元菱完成签到,获得积分10
4秒前
5秒前
xixi发布了新的文献求助10
5秒前
传奇3应助李牧采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
cindy完成签到,获得积分10
7秒前
yyq发布了新的文献求助20
7秒前
wentyli完成签到,获得积分10
7秒前
7秒前
犹豫的芷容完成签到,获得积分10
7秒前
wen发布了新的文献求助10
8秒前
dy1994完成签到,获得积分10
8秒前
8秒前
10秒前
大个应助linmo采纳,获得10
10秒前
补药学习发布了新的文献求助10
10秒前
...发布了新的文献求助10
10秒前
10秒前
乐乐应助迅速的宛海采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835