CFU-Net: A Coarse–Fine U-Net With Multilevel Attention for Medical Image Segmentation

计算机科学 网(多面体) 解码方法 分割 编码(内存) 卷积(计算机科学) 交叉口(航空) 任务(项目管理) 推论 人工智能 路径(计算) 模式识别(心理学) 算法 数学 工程类 计算机网络 人工神经网络 几何学 系统工程 航空航天工程
作者
Hanfeng Yin,Ying Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3293887
摘要

The U-Net has achieved great successes in medical image segmentation. Most U-Nets follow the encoding-decoding-decision inference path, and propagate the features from encoding to decoding. However, the traditional approaches do not exploit the semantic differences among different organs and different image modalities, which are task-unaware and have limited generalization. To address these issues, this paper proposes a Coarse-Fine U-Net (CFU-Net) architecture with two embedded U-Nets, and designs a Multi-Level Attention Module (MLAM) to execute the multi-level information interaction. CFU-Net introduces an additional decoding path at lower level, which is formed as partly coupled two U-Nets with different depths, namely coarse U-Net and fine U-Net. Coarse U-Net obtains a coarse prediction which is then used to guide the decoding of fine U-Net. MLAM adjusts the features propagation in fine U-Net by exploiting the interactions of multi-level information, including decision information, contextual information, and long-range dependencies. In addition, CFU-Net is constructed using dynamic convolution to improve the adaptability of convolution. The performance of CFU-Net is evaluated on four different modalities datasets, including ISIC2018, BUSI, Kvasir-SEG, and LiTS. For the Dice/Intersection-over-Union (IoU) scores, CFU-Net obtains 0.82%/1.62%, 4.34%/6.89%, 5.23%/9.30%, and 5.11%/5.18% improvements over the state-of-the-art UNeXt on ISIC2018, BUSI, Kvasir-SEG, and LiTS datasets, respectively. Moreover, the superiority of CFU-Net on different modalities segmentation tasks can also demonstrate that our method has better generalization, which can be transferred into various disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锅锅发布了新的文献求助10
刚刚
开朗指甲油完成签到,获得积分10
3秒前
PEADX完成签到,获得积分10
4秒前
5秒前
kingwill应助tttt采纳,获得20
6秒前
7秒前
李爱国应助Flynn采纳,获得10
7秒前
锅锅完成签到,获得积分10
8秒前
CipherSage应助柒七7采纳,获得10
9秒前
9秒前
xxx完成签到,获得积分10
9秒前
9秒前
小确幸完成签到,获得积分10
10秒前
12秒前
旅行者发布了新的文献求助10
12秒前
PEADX发布了新的文献求助30
12秒前
Xuexin应助HJJHJH采纳,获得20
13秒前
慕青应助红箭烟雨采纳,获得10
14秒前
柯卿彦发布了新的文献求助10
15秒前
15秒前
酷波er应助羔羊采纳,获得10
15秒前
粟粟完成签到,获得积分10
17秒前
LAMO发布了新的文献求助10
18秒前
18秒前
小胖酱完成签到,获得积分10
19秒前
小蘑菇应助无误采纳,获得10
19秒前
之贻完成签到,获得积分10
20秒前
20秒前
等待蜜蜂发布了新的文献求助10
21秒前
22秒前
23秒前
所所应助BANG采纳,获得10
24秒前
24秒前
思源应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得20
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182