Accurate Measurement of Bridge Vibration Displacement via Deep Convolutional Neural Network

流离失所(心理学) 计算机科学 人工神经网络 人工智能 卷积神经网络 振动 算法 结构健康监测 加速度 位移场 深度学习 计算机视觉 工程类 结构工程 声学 有限元法 心理学 物理 经典力学 心理治疗师
作者
Sen Lin,Sen Wang,Tao Liu,Xiaoqin Liu,Chang Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:3
标识
DOI:10.1109/tim.2023.3291786
摘要

Displacement measurement is an essential method for structural safety assessment and health monitoring, and the static and dynamic characteristics of the structure can be obtained through displacement. In order to overcome the limitations of sensors in vibration measurement of large structures, as well as the poor adaptability of visual measurement algorithms such as machine learning and digital image processing, this paper takes the bridge structure as the research object and introduces deep learning into the field of visual vibration measurement. Moreover, based on the deep convolutional neural network, a new high-precision displacement measurement algorithm of multi-scale feature extraction and fusion is proposed to solve the inaccurate measurement of existing neural networks. Experiments are carried out on bridge models in the laboratory environment and bridges in the real world to verify the adaptability and reliability of the proposed method. At the same time, the time-frequency characteristic curves of different deep learning models, template matching algorithms, and acceleration sensors are compared. The result analysis shows that the vibration displacement trajectory of the algorithm in this paper has the best coincidence with the standard displacement signal. Three experiments have fully verified that the algorithm in this paper has good application potential and implementation space in the field of structural state monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
CyberHamster完成签到,获得积分10
16秒前
xiaohong完成签到,获得积分10
19秒前
朱比特完成签到,获得积分10
20秒前
21秒前
zmuzhang2019发布了新的文献求助10
27秒前
onestepcloser完成签到 ,获得积分0
27秒前
zoe完成签到 ,获得积分10
28秒前
发嗲的慕蕊完成签到 ,获得积分10
29秒前
Linson完成签到,获得积分10
30秒前
顾矜应助赵三岁采纳,获得10
44秒前
yyy2025完成签到,获得积分10
48秒前
木雨亦潇潇完成签到,获得积分10
55秒前
香蕉觅云应助nine2652采纳,获得10
57秒前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
2分钟前
zhugao完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022