亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation signals of rock burst based on deep learning

岩爆 声发射 微震 信号(编程语言) 预警系统 计算机科学 人工神经网络 深度学习 地震学 地质学 人工智能 声学 工程类 煤矿开采 电信 物理 程序设计语言 废物管理
作者
Yangyang Di,Enyuan Wang,Zhonghui Li,Xiaofei Liu,Tao Huang,Jiajie Yao
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:170: 105519-105519 被引量:31
标识
DOI:10.1016/j.ijrmms.2023.105519
摘要

Microseismic, acoustic emission, and electromagnetic radiation monitoring methods are often used to monitor rock burst disasters in coal mines. In the process of coal mining, the time series characteristics and amplitude characteristics of microseismic, acoustic emission, and electromagnetic radiation data are mainly used to identify rockburst risk, but the results of risk identification through the three monitoring methods are quite different. Consequently, the accurate and comprehensive early warning of rock burst risk is still an urgent problem to be solved. The development of deep learning provides a new means for intelligent early warning of rock burst risk. In this paper, a comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation (MS-AE-EMR) signals of rock bursts was proposed based on a deep learning algorithm. This method uses long short-term memory recurrent neural networks (LSTM-RNNs) to intelligently identify the MS-AE-EMR precursor signal of rock burst risk, predicts the MS-AE-EMR signal by a convolution neural network (CNN), analyses the MS-AE-EMR precursor signal of rock burst risk through the data analysis method and obtains the risk coefficient of rock burst. Moreover, by using the MS-AE-EMR original signal and risk coefficient, it trains the multi-input CNN and inputs the predicted signal into the trained multi-input CNN to obtain the predicted risk coefficient of rock burst. Analysing the risk coefficient completes the comprehensive early warning of the MS-AE-EMR signal of rock burst. After field verification, the RNN-based comprehensive early warning method of the MS-AE-EMR signal can respond positively to rock burst risk and capture the information in advance. Therefore, this method is of great significance for accurate monitoring and early warning of rock burst in coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
10秒前
顺心蜜粉应助紧张的书本采纳,获得10
44秒前
今后应助echo采纳,获得10
44秒前
立夏完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
gavin完成签到 ,获得积分10
2分钟前
腐竹完成签到,获得积分10
2分钟前
2分钟前
大气建辉完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
5分钟前
杪夏二八完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
义气雁完成签到 ,获得积分10
5分钟前
wodetaiyangLLL完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Ava应助飞翔的企鹅采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
noob_发布了新的文献求助20
6分钟前
6分钟前
6分钟前
noob_完成签到,获得积分20
6分钟前
echo发布了新的文献求助10
6分钟前
founder发布了新的文献求助20
7分钟前
7分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
7分钟前
MchemG应助科研通管家采纳,获得10
7分钟前
MchemG应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204801
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629