Comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation signals of rock burst based on deep learning

岩爆 声发射 微震 信号(编程语言) 预警系统 计算机科学 人工神经网络 深度学习 地震学 地质学 人工智能 声学 工程类 煤矿开采 电信 物理 程序设计语言 废物管理
作者
Yangyang Di,Enyuan Wang,Zhonghui Li,Xiaofei Liu,Tao Huang,Jiajie Yao
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier]
卷期号:170: 105519-105519 被引量:31
标识
DOI:10.1016/j.ijrmms.2023.105519
摘要

Microseismic, acoustic emission, and electromagnetic radiation monitoring methods are often used to monitor rock burst disasters in coal mines. In the process of coal mining, the time series characteristics and amplitude characteristics of microseismic, acoustic emission, and electromagnetic radiation data are mainly used to identify rockburst risk, but the results of risk identification through the three monitoring methods are quite different. Consequently, the accurate and comprehensive early warning of rock burst risk is still an urgent problem to be solved. The development of deep learning provides a new means for intelligent early warning of rock burst risk. In this paper, a comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation (MS-AE-EMR) signals of rock bursts was proposed based on a deep learning algorithm. This method uses long short-term memory recurrent neural networks (LSTM-RNNs) to intelligently identify the MS-AE-EMR precursor signal of rock burst risk, predicts the MS-AE-EMR signal by a convolution neural network (CNN), analyses the MS-AE-EMR precursor signal of rock burst risk through the data analysis method and obtains the risk coefficient of rock burst. Moreover, by using the MS-AE-EMR original signal and risk coefficient, it trains the multi-input CNN and inputs the predicted signal into the trained multi-input CNN to obtain the predicted risk coefficient of rock burst. Analysing the risk coefficient completes the comprehensive early warning of the MS-AE-EMR signal of rock burst. After field verification, the RNN-based comprehensive early warning method of the MS-AE-EMR signal can respond positively to rock burst risk and capture the information in advance. Therefore, this method is of great significance for accurate monitoring and early warning of rock burst in coal mines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
益安完成签到,获得积分10
1秒前
TaoTaooooII完成签到,获得积分10
1秒前
rsq完成签到,获得积分10
1秒前
1秒前
麦冬粑粑完成签到,获得积分10
1秒前
Adzuki0812完成签到,获得积分10
2秒前
Kriten完成签到,获得积分10
2秒前
知行合一完成签到,获得积分10
2秒前
3秒前
姜姜完成签到,获得积分10
3秒前
英俊的铭应助霸气的怜珊采纳,获得10
3秒前
爆杀小白鼠完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
超哥完成签到,获得积分10
5秒前
飞飞完成签到,获得积分10
5秒前
qqwxp完成签到,获得积分10
5秒前
5秒前
婷刘完成签到,获得积分10
5秒前
谦让碧菡完成签到,获得积分10
6秒前
guohuameike完成签到,获得积分10
6秒前
顺利灭绝完成签到,获得积分20
6秒前
单身的乐瑶完成签到,获得积分10
7秒前
Moonchild发布了新的文献求助10
7秒前
萌~Lucky完成签到,获得积分10
8秒前
喜喜完成签到,获得积分20
8秒前
9秒前
9秒前
zgrmws应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
fff应助科研通管家采纳,获得10
9秒前
Tengami应助科研通管家采纳,获得10
9秒前
幸福大碗完成签到,获得积分10
9秒前
zgrmws应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
十一完成签到,获得积分10
10秒前
10秒前
laber应助guest采纳,获得50
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130