Improving Automated Evaluation of Student Text Responses Using GPT-3.5 for Text Data Augmentation

计算机科学 人工智能 分类 标记数据 集合(抽象数据类型) 训练集 稀缺 机器学习 程序设计语言 经济 微观经济学
作者
Keith Cochran,Clayton Cohn,Jean-François Rouet,Peter Hastings
出处
期刊:Lecture Notes in Computer Science 卷期号:: 217-228
标识
DOI:10.1007/978-3-031-36272-9_18
摘要

In education, intelligent learning environments allow students to choose how to tackle open-ended tasks while monitoring performance and behavior, allowing for the creation of adaptive support to help students overcome challenges. Timely feedback is critical to aid students’ progression toward learning and improved problem-solving. Feedback on text-based student responses can be delayed when teachers are overloaded with work. Automated evaluation can provide quick student feedback while easing the manual evaluation burden for teachers in areas with a high teacher-to-student ratio. Current methods of evaluating student essay responses to questions have included transformer-based natural language processing models with varying degrees of success. One main challenge in training these models is the scarcity of data for student-generated data. Larger volumes of training data are needed to create models that perform at a sufficient level of accuracy. Some studies have vast data, but large quantities are difficult to obtain when educational studies involve student-generated text. To overcome this data scarcity issue, text augmentation techniques have been employed to balance and expand the data set so that models can be trained with higher accuracy, leading to more reliable evaluation and categorization of student answers to aid teachers in the student’s learning progression. This paper examines the text-generating AI model, GPT-3.5, to determine if prompt-based text-generation methods are viable for generating additional text to supplement small sets of student responses for machine learning model training. We augmented student responses across two domains using GPT-3.5 completions and used that data to train a multilingual BERT model. Our results show that text generation can improve model performance on small data sets over simple self-augmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助ZeradesY采纳,获得10
2秒前
3秒前
3秒前
陈毛毛完成签到,获得积分10
4秒前
万能图书馆应助依人如梦采纳,获得10
4秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
婷婷应助科研通管家采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
昂帕帕斯应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
Summer应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得20
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
quhayley应助科研通管家采纳,获得10
6秒前
wwww0wwww应助科研通管家采纳,获得20
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
quhayley应助科研通管家采纳,获得10
7秒前
yummy应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
wwww0wwww应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
quhayley应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得30
7秒前
wwww0wwww应助科研通管家采纳,获得10
7秒前
若E18应助科研通管家采纳,获得10
7秒前
112发布了新的文献求助10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得10
7秒前
7秒前
xiaoming完成签到,获得积分10
7秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038