Flood susceptibility prediction using tree-based machine learning models in the GBA

大洪水 台风 范畴变量 随机森林 梯度升压 Boosting(机器学习) 决策树 树(集合论) 地理 水文学(农业) 环境科学 机器学习 计算机科学 数学 气象学 地质学 岩土工程 数学分析 考古
作者
Hai‐Min Lyu,Zhen‐Yu Yin
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:97: 104744-104744 被引量:44
标识
DOI:10.1016/j.scs.2023.104744
摘要

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) frequently suffered from floods accompanied with typhoons. This study developed a framework for evaluating flood susceptibility in the GBA using tree-based machine learning (ML) and geographical information system techniques. Based on the flood inventory, tree-based models, namely random forest, gradient boost decision tree, extreme gradient boosting, and categorical boosting considering topography, exposure, and vulnerability as influential factors, were used to train and test ML models, and the trained models were then used to predict flood susceptibility. All tree-based ML models achieved good performance, with accuracy values greater than 0.79. The categorical boosting model performed the best than other models to predict flood susceptibility. The flood susceptibility maps showed that more than 16% of the areas of the GBA were classified as having high flood susceptibility, and almost 70% of the historical floods were located in areas with high flood susceptibility. The model interpretation of the summary of Shapley additive explanation values indicated that the influential factors of elevation, population density, and typhoon intensity had a strong influence on flood susceptibility. The obtained spatial flood susceptibilities provide suggestions for flood disaster mitigation in the GBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀静珊发布了新的文献求助10
刚刚
852应助阿蒙采纳,获得10
1秒前
Lucas应助赟糖采纳,获得10
1秒前
只争朝夕应助kevin1018采纳,获得10
1秒前
留胡子的沛儿完成签到,获得积分10
1秒前
小蘑菇应助xiaolaoshuboshi采纳,获得10
1秒前
1秒前
2秒前
尧凯发布了新的文献求助20
2秒前
mlty00发布了新的文献求助10
3秒前
Z1070741749完成签到,获得积分10
3秒前
zh完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
斯文败类应助往往小陈采纳,获得10
4秒前
DQ完成签到 ,获得积分10
4秒前
阿钱完成签到,获得积分10
4秒前
6秒前
6秒前
万能图书馆应助逃出生天采纳,获得10
6秒前
6秒前
7秒前
yanghe完成签到,获得积分10
7秒前
7秒前
caterpillar完成签到,获得积分10
7秒前
叶子发布了新的文献求助10
7秒前
大方鹤完成签到 ,获得积分10
7秒前
7秒前
LMF完成签到 ,获得积分10
7秒前
曦9423发布了新的文献求助10
8秒前
8秒前
壮观醉香完成签到,获得积分20
8秒前
李佳璐完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710