已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flood susceptibility prediction using tree-based machine learning models in the GBA

大洪水 台风 范畴变量 随机森林 梯度升压 Boosting(机器学习) 决策树 树(集合论) 地理 水文学(农业) 环境科学 机器学习 计算机科学 数学 气象学 地质学 岩土工程 数学分析 考古
作者
Hai‐Min Lyu,Zhen‐Yu Yin
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:97: 104744-104744 被引量:24
标识
DOI:10.1016/j.scs.2023.104744
摘要

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) frequently suffered from floods accompanied with typhoons. This study developed a framework for evaluating flood susceptibility in the GBA using tree-based machine learning (ML) and geographical information system techniques. Based on the flood inventory, tree-based models, namely random forest, gradient boost decision tree, extreme gradient boosting, and categorical boosting considering topography, exposure, and vulnerability as influential factors, were used to train and test ML models, and the trained models were then used to predict flood susceptibility. All tree-based ML models achieved good performance, with accuracy values greater than 0.79. The categorical boosting model performed the best than other models to predict flood susceptibility. The flood susceptibility maps showed that more than 16% of the areas of the GBA were classified as having high flood susceptibility, and almost 70% of the historical floods were located in areas with high flood susceptibility. The model interpretation of the summary of Shapley additive explanation values indicated that the influential factors of elevation, population density, and typhoon intensity had a strong influence on flood susceptibility. The obtained spatial flood susceptibilities provide suggestions for flood disaster mitigation in the GBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
556完成签到 ,获得积分10
刚刚
刚刚
Nina完成签到 ,获得积分10
1秒前
缥缈飞鸟完成签到 ,获得积分10
2秒前
2秒前
白沙叶完成签到,获得积分10
6秒前
持卿应助hushan53采纳,获得10
6秒前
大个应助罗浩禹采纳,获得10
7秒前
态度发布了新的文献求助10
9秒前
JOKER完成签到,获得积分10
27秒前
共享精神应助安静海露采纳,获得10
27秒前
30秒前
jjx1005完成签到 ,获得积分10
34秒前
yaolei完成签到,获得积分10
39秒前
hyl-tcm完成签到,获得积分10
42秒前
42秒前
43秒前
动人的黄豆完成签到,获得积分10
43秒前
zxt12305313完成签到 ,获得积分10
45秒前
思源应助聪慧的致远采纳,获得10
46秒前
慕青应助愤怒也哈哈采纳,获得10
47秒前
雨宝发布了新的文献求助30
47秒前
张腾雕完成签到 ,获得积分10
49秒前
51秒前
安静海露完成签到,获得积分10
51秒前
54秒前
安静海露发布了新的文献求助10
56秒前
yyds完成签到,获得积分10
58秒前
59秒前
59秒前
CipherSage应助biodon采纳,获得10
1分钟前
罗浩禹发布了新的文献求助10
1分钟前
斯文败类应助愤怒也哈哈采纳,获得10
1分钟前
dll完成签到 ,获得积分10
1分钟前
诚心的鹏飞完成签到,获得积分10
1分钟前
Zero140完成签到,获得积分10
1分钟前
1分钟前
1分钟前
愤怒也哈哈完成签到,获得积分10
1分钟前
zjspidany应助xxyqddx采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946587
关于积分的说明 8530889
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855