Flood susceptibility prediction using tree-based machine learning models in the GBA

大洪水 台风 范畴变量 随机森林 梯度升压 Boosting(机器学习) 决策树 树(集合论) 地理 水文学(农业) 环境科学 机器学习 计算机科学 数学 气象学 地质学 岩土工程 数学分析 考古
作者
Hai‐Min Lyu,Zhen‐Yu Yin
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:97: 104744-104744 被引量:24
标识
DOI:10.1016/j.scs.2023.104744
摘要

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) frequently suffered from floods accompanied with typhoons. This study developed a framework for evaluating flood susceptibility in the GBA using tree-based machine learning (ML) and geographical information system techniques. Based on the flood inventory, tree-based models, namely random forest, gradient boost decision tree, extreme gradient boosting, and categorical boosting considering topography, exposure, and vulnerability as influential factors, were used to train and test ML models, and the trained models were then used to predict flood susceptibility. All tree-based ML models achieved good performance, with accuracy values greater than 0.79. The categorical boosting model performed the best than other models to predict flood susceptibility. The flood susceptibility maps showed that more than 16% of the areas of the GBA were classified as having high flood susceptibility, and almost 70% of the historical floods were located in areas with high flood susceptibility. The model interpretation of the summary of Shapley additive explanation values indicated that the influential factors of elevation, population density, and typhoon intensity had a strong influence on flood susceptibility. The obtained spatial flood susceptibilities provide suggestions for flood disaster mitigation in the GBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻馒头发布了新的文献求助10
1秒前
阿俊1212完成签到,获得积分10
2秒前
研友_ZlqeD8完成签到,获得积分10
2秒前
3秒前
万能图书馆应助雨双采纳,获得10
4秒前
5秒前
6秒前
xxxxxxxx完成签到,获得积分10
8秒前
顺利的觅云完成签到,获得积分10
8秒前
斯文败类应助li采纳,获得10
9秒前
酷波er应助小南采纳,获得10
9秒前
烟花应助落落采纳,获得30
9秒前
晒黑的雪碧完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
xxl完成签到 ,获得积分10
13秒前
在水一方应助王雯雯采纳,获得10
13秒前
14秒前
万能图书馆应助年少轻狂采纳,获得10
14秒前
yangxi发布了新的文献求助10
14秒前
15秒前
小雪糕完成签到,获得积分10
17秒前
学术熊发布了新的文献求助10
17秒前
刘霞发布了新的文献求助10
17秒前
单薄靖儿发布了新的文献求助10
17秒前
在水一方应助路内里采纳,获得10
18秒前
18秒前
Kimen发布了新的文献求助10
19秒前
20秒前
kangjie123完成签到,获得积分10
21秒前
yangxi完成签到,获得积分20
21秒前
不攻自破发布了新的文献求助10
22秒前
NexusExplorer应助lili采纳,获得10
23秒前
25秒前
桐桐应助小情绪采纳,获得100
27秒前
思源应助wuchang采纳,获得10
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902