Flood susceptibility prediction using tree-based machine learning models in the GBA

大洪水 台风 范畴变量 随机森林 梯度升压 Boosting(机器学习) 决策树 树(集合论) 地理 水文学(农业) 环境科学 机器学习 计算机科学 数学 气象学 地质学 岩土工程 数学分析 考古
作者
Hai‐Min Lyu,Zhen‐Yu Yin
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:97: 104744-104744 被引量:44
标识
DOI:10.1016/j.scs.2023.104744
摘要

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) frequently suffered from floods accompanied with typhoons. This study developed a framework for evaluating flood susceptibility in the GBA using tree-based machine learning (ML) and geographical information system techniques. Based on the flood inventory, tree-based models, namely random forest, gradient boost decision tree, extreme gradient boosting, and categorical boosting considering topography, exposure, and vulnerability as influential factors, were used to train and test ML models, and the trained models were then used to predict flood susceptibility. All tree-based ML models achieved good performance, with accuracy values greater than 0.79. The categorical boosting model performed the best than other models to predict flood susceptibility. The flood susceptibility maps showed that more than 16% of the areas of the GBA were classified as having high flood susceptibility, and almost 70% of the historical floods were located in areas with high flood susceptibility. The model interpretation of the summary of Shapley additive explanation values indicated that the influential factors of elevation, population density, and typhoon intensity had a strong influence on flood susceptibility. The obtained spatial flood susceptibilities provide suggestions for flood disaster mitigation in the GBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微妙关注了科研通微信公众号
刚刚
HE发布了新的文献求助10
刚刚
漫威蜘蛛侠关注了科研通微信公众号
1秒前
靓仔完成签到,获得积分10
1秒前
liyingyan完成签到,获得积分10
1秒前
传奇3应助ZNan采纳,获得10
1秒前
1秒前
Kero小可完成签到,获得积分10
2秒前
2秒前
2秒前
浮游应助高贵的魔王采纳,获得10
2秒前
搜集达人应助阿胜采纳,获得10
2秒前
3秒前
3秒前
Ferry发布了新的文献求助10
3秒前
4秒前
sunhope发布了新的文献求助10
4秒前
4秒前
5秒前
欢喜尔芙发布了新的文献求助10
5秒前
夹夹完成签到,获得积分10
5秒前
zj完成签到,获得积分10
5秒前
洗面奶完成签到 ,获得积分10
5秒前
6秒前
7秒前
Arthur完成签到,获得积分10
7秒前
guozizi发布了新的文献求助10
8秒前
8秒前
TZ完成签到,获得积分10
8秒前
欢欢cyyy完成签到,获得积分10
8秒前
香香发布了新的文献求助10
9秒前
GH07355018发布了新的文献求助20
9秒前
9秒前
10秒前
10秒前
曲幻梅完成签到,获得积分10
11秒前
Eason215xB发布了新的文献求助10
11秒前
RC_Wang发布了新的文献求助10
11秒前
李倩完成签到 ,获得积分10
11秒前
12秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238688
求助须知:如何正确求助?哪些是违规求助? 4406344
关于积分的说明 13713588
捐赠科研通 4274733
什么是DOI,文献DOI怎么找? 2345747
邀请新用户注册赠送积分活动 1342805
关于科研通互助平台的介绍 1300751