Machine learning and molecular fingerprint screening of high-performance 2D/3D MOF membranes for Kr/Xe separation

支持向量机 分离(统计) 随机森林 Boosting(机器学习) 计算 气体分离 金属有机骨架 单变量 人工智能 决策树 化学 分析化学(期刊) 材料科学 计算机科学 算法 机器学习 色谱法 多元统计 吸附 物理化学 生物化学
作者
Qiuhong Huang,Xueying Yuan,Lifeng Li,Yaling Yan,Xiao Yang,Wei Wang,Yu Chen,Hong Liang,Hanyu Gao,Yufang Wu,Zhiwei Qiao
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:280: 119031-119031 被引量:17
标识
DOI:10.1016/j.ces.2023.119031
摘要

Separation of Xe and Kr is extremely important in several applications, such as spent nuclear fuel reprocessing. In this work, high-throughput computational screening (HTCS) was used to simulate the dynamic behavior of Kr/Xe separation for 6013 computation-ready, experimental metal–organic framework membranes (CoRE-MOFMs). First, the structure–performance relationships of the metal–organic framework membranes (MOFMs) for Kr/Xe separation were analyzed by univariate analysis. Then, five machine learning (ML) algorithms (random forest (RF), decision tree (DT), support vector machine (SVM), k-nearest neighbors (KNN) and extreme gradient boosting (XGB)) were employed for classification and regression of permeability (P) and permselectivity (S). Besides, the excellent bits of linkers were determined by molecular fingerprints (MFs), and the excellent nodes and separation mechanisms were also discussed. Finally, three design strategies were proposed to boost the Kr/Xe separation performance of MOF membranes. Combining HTCS, ML and MF, we provide a new direction for designing high-performance MOF membranes for Kr/Xe separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
实验室应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
史前巨怪完成签到,获得积分10
2秒前
慕青应助mysci采纳,获得10
2秒前
cc发布了新的文献求助10
2秒前
董是鑫完成签到 ,获得积分10
2秒前
逃出生天发布了新的文献求助10
3秒前
3秒前
丘比特应助仅此而已采纳,获得10
3秒前
ddz发布了新的文献求助10
3秒前
3秒前
快乐芒果发布了新的文献求助10
3秒前
weiliu完成签到,获得积分10
3秒前
王一发布了新的文献求助10
4秒前
惊鸿一面发布了新的文献求助10
5秒前
zhang完成签到,获得积分10
5秒前
5秒前
任性依萱完成签到,获得积分10
5秒前
5秒前
5秒前
xianjingli发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710