材料科学
电容器
储能
电介质
极化(电化学)
光电子学
电压
电气工程
功率(物理)
化学
物理
物理化学
量子力学
工程类
作者
Qiansu Ma,Liang Chen,Huifen Yu,Jie Wu,Lifeng Zhu,Jikun Yang,He Qi
出处
期刊:Small
[Wiley]
日期:2023-07-23
卷期号:19 (47)
被引量:9
标识
DOI:10.1002/smll.202303768
摘要
Lead-free dielectric ceramics with excellent energy-storage performance are crucial to the development of the next-generation advanced pulse power capacitors. However, low energy-storage density limits the evolution of capacitors toward lightweight, miniaturization, and integration. Here, an effective strategy of constructing highly dynamic polarization heterogeneous nanoregions is proposed in lead-free relaxors to realize an ultrahigh energy-storage density of ≈8.0 J cm-3 , making almost ten times the growth of energy-storage density compared with pure Bi0.5 Na0.5 TiO3 ceramic, accompanied by a higher energy efficiency of ≈80% as well as an ultrafast discharge rate of ≈20 ns. Ultrasmall polarization heterogeneous nanoregions with different orientations and ultrahigh flexibility, and significantly decreased grain size to submicron lead to reduced heat loss, improved breakdown electric field and polarization, enhanced relaxation, and delayed polarization saturation behaviors, contributing to the remarkable energy-storage performance. Moreover, the breakdown path distribution or electrical tree evolution behaviors are systematically studied to reveal the origin of ultrahigh breakdown electric field through phase field simulations. This work demonstrates that constructing highly dynamic polarization heterogeneous nanoregions is a powerful approach to develop new lead-free dielectric materials with high energy-storage performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI