Experiment and model of a photovoltaic module with evaporative cooling

蒸发冷却器 光伏系统 环境科学 太阳模拟器 核工程 材料科学 体积流量 气象学 工程类 机械 电气工程 物理
作者
Titiasak Chea,Thoranis Deethayat,Tanongkiat Kiatsiriroat,Attakorn Asanakham
出处
期刊:Results in engineering [Elsevier]
卷期号:19: 101290-101290 被引量:8
标识
DOI:10.1016/j.rineng.2023.101290
摘要

Most studies on evaporative cooling of photovoltaic modules have primarily relied on experimental investigations without any general model to investigate the module performance. In this paper, an experimental model similar to that of solar collector performance was developed in terms of total efficiency and ratio of temperature difference between cooling fluid and ambient temperatures with solar radiation for finding the module thermal characteristics which were optical efficiency and module overall heat loss coefficient, the module temperature, and then the generated electrical power. To validate the model, experimental tests were conducted on a 320 Wp monocrystalline photovoltaic module of 1.956 m × 0.992 m area equipped with an evaporating surface at the module rear surface on some clear sky and cloudy days in Chiang Mai, Thailand. The evaporating pad was made of cellulose and polypropylene with 5 mm thickness. A controlled flow rate of water at 0.3 L/min was maintained with inlet temperatures ranging between 25 and 35 °C, ensuring a non-dripping condition. The results from the new simplified model demonstrated good agreement with the experimental data. In addition, the developed model was also used to predict the yearly performance of the photovoltaic module with evaporative cooling under tropical climate of Chiang Mai. The average total and net monthly electrical output were increased 7.04 and 4.47%, respectively compared to that of the normal unit. In case of hot and arid area such as Ouargla, Algeria, better improvement of PV module performance could be attained, and the average total and net monthly power generation could be enhanced 8.62 and 6.48%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助hhh采纳,获得10
刚刚
刚刚
小巧的香氛完成签到 ,获得积分10
1秒前
1秒前
1秒前
zxcv23发布了新的文献求助10
1秒前
没有名称发布了新的文献求助10
1秒前
2秒前
2秒前
zier完成签到 ,获得积分10
3秒前
阡陌完成签到,获得积分10
3秒前
华仔应助毕业就好采纳,获得10
3秒前
liyi发布了新的文献求助10
3秒前
难过小天鹅完成签到,获得积分10
4秒前
非常可爱发布了新的文献求助20
4秒前
eee发布了新的文献求助10
4秒前
幸福胡萝卜完成签到,获得积分10
4秒前
5秒前
科研通AI5应助琅琊为刃采纳,获得10
5秒前
5秒前
5秒前
5秒前
寒冷的奇异果完成签到,获得积分10
6秒前
hziyu发布了新的文献求助10
7秒前
7秒前
野性的南蕾完成签到,获得积分10
7秒前
毛毛哦啊发布了新的文献求助10
7秒前
zzzzzk发布了新的文献求助10
7秒前
7秒前
lalala发布了新的文献求助10
8秒前
三里墩头应助oldlee采纳,获得20
8秒前
8秒前
iNk应助西安小小朱采纳,获得10
8秒前
CodeCraft应助西安小小朱采纳,获得10
8秒前
无花果应助爱学习的小迟采纳,获得10
9秒前
哭泣的映寒完成签到 ,获得积分10
9秒前
xls完成签到,获得积分10
9秒前
9秒前
故意的傲玉应助圈圈采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672