已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 图层(电子) 操作系统
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信萃完成签到 ,获得积分10
6秒前
沉小墨发布了新的文献求助10
10秒前
13秒前
赘婿应助1场久下未停的雨采纳,获得10
13秒前
14秒前
传奇3应助谦让友绿采纳,获得10
15秒前
勤劳钧发布了新的文献求助10
15秒前
小欧完成签到,获得积分10
15秒前
16秒前
岸在海的深处完成签到 ,获得积分10
17秒前
CipherSage应助Zxc采纳,获得10
17秒前
coinc发布了新的文献求助10
18秒前
rain123发布了新的文献求助10
19秒前
翻译度完成签到,获得积分10
20秒前
Kaiser发布了新的文献求助10
21秒前
23秒前
24秒前
24秒前
25秒前
小蘑菇应助小饶采纳,获得10
26秒前
28秒前
28秒前
29秒前
30秒前
34秒前
35秒前
36秒前
颜南风完成签到 ,获得积分10
38秒前
水晶鞋完成签到 ,获得积分10
39秒前
阔达的蜜粉关注了科研通微信公众号
40秒前
小饶发布了新的文献求助10
40秒前
40秒前
杳鸢应助风茠住采纳,获得20
41秒前
lucky_发布了新的文献求助10
43秒前
艾欧比发布了新的文献求助10
44秒前
刘五十七完成签到 ,获得积分10
45秒前
46秒前
木子青山发布了新的文献求助10
47秒前
kami完成签到 ,获得积分10
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229557
求助须知:如何正确求助?哪些是违规求助? 2877158
关于积分的说明 8198029
捐赠科研通 2544502
什么是DOI,文献DOI怎么找? 1374449
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749