Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 图层(电子) 操作系统
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adelais发布了新的文献求助20
刚刚
77777发布了新的文献求助10
1秒前
冰阔落发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
111发布了新的文献求助10
1秒前
3秒前
3秒前
skywalker发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助李牧采纳,获得10
3秒前
4秒前
4秒前
carpybala发布了新的文献求助10
4秒前
5秒前
无花果应助嘉嘉采纳,获得10
5秒前
oooooo完成签到,获得积分10
5秒前
科研通AI6应助文献高手采纳,获得10
5秒前
YJ888发布了新的文献求助10
6秒前
bkagyin应助znsmaqwdy采纳,获得10
6秒前
6秒前
Yanxb发布了新的文献求助10
6秒前
6秒前
顾安完成签到 ,获得积分10
7秒前
情怀应助lz4540采纳,获得10
7秒前
LMW应助玉米之路采纳,获得10
7秒前
7秒前
8秒前
hyominhsu发布了新的文献求助10
9秒前
9秒前
我嘞个豆发布了新的文献求助10
9秒前
可爱的函函应助Cc采纳,获得10
9秒前
前前完成签到,获得积分10
9秒前
10秒前
虚心元绿发布了新的文献求助10
10秒前
11发布了新的文献求助30
10秒前
笑点低的静竹完成签到,获得积分10
11秒前
甜蜜不悔发布了新的文献求助30
12秒前
白若可依发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709