亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 图层(电子) 操作系统
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charlie完成签到 ,获得积分10
19秒前
大模型应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得10
2分钟前
kuoping完成签到,获得积分0
3分钟前
IShowSpeed完成签到,获得积分10
3分钟前
asd1576562308完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
xun完成签到,获得积分20
5分钟前
陈陈完成签到,获得积分10
5分钟前
SimonShaw完成签到,获得积分10
5分钟前
5分钟前
汪汪淬冰冰完成签到,获得积分10
5分钟前
陈陈关注了科研通微信公众号
6分钟前
6分钟前
7分钟前
陈陈发布了新的文献求助20
7分钟前
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
走啊走应助arniu2008采纳,获得10
9分钟前
cc完成签到 ,获得积分10
10分钟前
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
黄景滨完成签到 ,获得积分10
10分钟前
曙光完成签到,获得积分10
11分钟前
11分钟前
优秀的dd完成签到 ,获得积分10
11分钟前
xxxy发布了新的文献求助30
11分钟前
12分钟前
MchemG应助科研通管家采纳,获得30
12分钟前
李东东完成签到 ,获得积分10
12分钟前
12分钟前
希望天下0贩的0应助xxxy采纳,获得30
12分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137824
求助须知:如何正确求助?哪些是违规求助? 4337446
关于积分的说明 13511562
捐赠科研通 4176213
什么是DOI,文献DOI怎么找? 2289894
邀请新用户注册赠送积分活动 1290432
关于科研通互助平台的介绍 1232270