Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 操作系统 图层(电子)
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YSY完成签到,获得积分10
1秒前
1秒前
DKN完成签到,获得积分10
2秒前
传奇3应助如意代秋采纳,获得10
2秒前
张小卷发布了新的文献求助10
3秒前
unique完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
徐若楠完成签到,获得积分20
6秒前
子非鱼完成签到,获得积分10
6秒前
巴适地瓜发布了新的文献求助10
6秒前
顾矜应助qiuqiu采纳,获得30
7秒前
holiday发布了新的文献求助30
8秒前
梧桐发布了新的文献求助10
9秒前
9秒前
张小卷完成签到,获得积分10
10秒前
移液枪是什么完成签到,获得积分10
10秒前
桐桐应助子非鱼采纳,获得10
11秒前
巴适地瓜完成签到,获得积分10
12秒前
akakns完成签到 ,获得积分10
13秒前
领导范儿应助kk采纳,获得10
13秒前
15秒前
17秒前
桐桐应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
Mjq发布了新的文献求助10
19秒前
LNN完成签到,获得积分10
20秒前
holiday完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
YZZ完成签到,获得积分10
22秒前
22秒前
zhangshu发布了新的文献求助10
24秒前
yeeeee发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150