Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 图层(电子) 操作系统
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fzh完成签到,获得积分10
1秒前
wu给wu的求助进行了留言
2秒前
Lucas应助小杭76采纳,获得10
4秒前
5秒前
霖霖霖完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
鹿鹿完成签到,获得积分10
7秒前
8秒前
玄枵发布了新的文献求助10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
华仔应助yinhao采纳,获得10
13秒前
xiamu.完成签到,获得积分20
13秒前
13秒前
李健的小迷弟应助moodys采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
vc片完成签到,获得积分10
14秒前
爆米花应助爱打乒乓球采纳,获得10
15秒前
闪闪绮露完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
19秒前
制药小兵发布了新的文献求助10
19秒前
20秒前
科研小白发布了新的文献求助10
20秒前
搜集达人应助沉醉夜色采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546