A Visually Meaningful Image Encryption Scheme Based on Lossless Compression SPIHT Coding

计算机科学 无损压缩 加密 上传 在层次树中设置分区 有损压缩 图像压缩 可视密码 计算机视觉 理论计算机科学 人工智能 密码学 图像(数学) 数据压缩 计算机安全 图像处理 操作系统 秘密分享
作者
Yang Yang,Ming Cheng,Yingqiu Ding,Weiming Zhang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2387-2401 被引量:20
标识
DOI:10.1109/tsc.2023.3258144
摘要

With the popularity of social networks and the increase of cloud platform applications, service computing has also developed. Therefore, the protection of information even privacy uploaded to the cloud server has become critical. Recently, some researchers have proposed encryption schemes of visual meaningful image by using compressive sensing. However, these schemes generally cannot hide the large-size of plain image into the small-size of cover image and cannot recover the original plain image lossless. To solve above problems, this paper proposed a visually meaningful image encryption scheme based on lossless compression set partitioning in hierarchical trees (SPIHT) coding. The sender encrypts the plain image into the cipher image through the proposed encryption scheme, and then uploads the cipher image to the cloud server which is assumed as semi-honest trusted. Authorized receiver can completely decrypt the plain image after downloading the cipher image. In addition, even if the cipher image is attacked by attacker in the cloud server, the final decrypted image is still readable. Experimental results show that the proposed scheme is not only completely reversible and can hide the large-size of plain image into the small-size of cover image, but also superior to other schemes in visual quality and anti-attack performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒寒完成签到,获得积分10
1秒前
1秒前
鹿冠冠发布了新的文献求助10
1秒前
2秒前
yyx完成签到,获得积分10
2秒前
cherry发布了新的文献求助30
2秒前
2秒前
可爱的函函应助白凉鞋采纳,获得10
2秒前
甜甜信封发布了新的文献求助10
2秒前
英姑应助deathmask采纳,获得10
3秒前
3秒前
4秒前
xiaoxinxin发布了新的文献求助10
4秒前
善学以致用应助吃货采纳,获得10
4秒前
Zwj发布了新的文献求助10
5秒前
5秒前
supering11发布了新的文献求助10
5秒前
6秒前
榆树发布了新的文献求助10
6秒前
斯可发布了新的文献求助10
6秒前
包容的笑容完成签到,获得积分10
6秒前
Ava应助KKK采纳,获得10
6秒前
bbq完成签到,获得积分10
7秒前
大模型应助顺利的雨灵采纳,获得10
7秒前
SUN完成签到,获得积分10
7秒前
清秋若月应助雯十七采纳,获得10
8秒前
kiki发布了新的文献求助10
8秒前
低调发布了新的文献求助10
9秒前
particularc发布了新的文献求助10
9秒前
HHH发布了新的文献求助10
9秒前
haha发布了新的文献求助10
10秒前
vvvvyl应助xx采纳,获得10
11秒前
华仔应助调皮的蓝天采纳,获得10
11秒前
cMss完成签到,获得积分10
11秒前
半岁半发布了新的文献求助20
12秒前
颜林林发布了新的文献求助10
12秒前
共享精神应助chenling采纳,获得10
12秒前
风xxq完成签到,获得积分10
13秒前
13秒前
大橘子完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469301
求助须知:如何正确求助?哪些是违规求助? 3062350
关于积分的说明 9078786
捐赠科研通 2752698
什么是DOI,文献DOI怎么找? 1510579
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697828