Model compression and privacy preserving framework for federated learning

计算机科学 上传 瓶颈 加密 同态加密 无线网络 MNIST数据库 无线 个性化 数据压缩 人工神经网络 数据挖掘 计算机网络 人工智能 分布式计算 机器学习 嵌入式系统 电信 万维网 操作系统
作者
Xi Zhu,Junbo Wang,Wuhui Chen,Kento Sato
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:140: 376-389 被引量:5
标识
DOI:10.1016/j.future.2022.10.026
摘要

Federated learning (FL) as a collaborative learning paradigm has attracted extensive attention due to its characteristic of privacy preserving, in which the clients train a shared neural network model collaboratively by their local dataset and upload their model parameters merely instead of original data by wireless network in the whole training process. Because FL reduces transmission significantly, it can further meets the efficiency and security of the next generation wireless system. Although FL has reduced the size of information that needs to be transmitted, the update of model parameters still suffers from privacy leakage and communication bottleneck especially in wireless networks. To address the problem of privacy and communication, this paper proposes a model compression based FL framework. Firstly, the designed model compression framework provides effective support for efficient and secure model parameters updating in FL while keeping the personalization of all clients. Then, the proposed perturbed model compression method can further reduce the size of the model and protect the privacy of the model without sacrificing much accuracy. Besides, it also facilitates the simultaneous execution of decryption and decompressing operations by reconstruction algorithm on encrypted and compressed model parameters which is obtained by the proposed perturbed model compression method. Finally, the illustrative results demonstrate that the proposed model compression based FL framework can significantly reduce the number of model parameters for uploading with a strong privacy preservation property. For example, when the compression ratio is 0.0953 (i.e., only 9.53% of the parameters are uploaded), the accuracy of MNIST achieves 97% while the accuracy without compression is 98%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
田様应助Cz采纳,获得10
2秒前
科研通AI2S应助宇文数学采纳,获得10
3秒前
酷波er应助清新的苑博采纳,获得10
5秒前
Cz完成签到,获得积分20
6秒前
传奇3应助圣晟胜采纳,获得10
6秒前
韩帅发布了新的文献求助10
7秒前
薛定谔的猫完成签到,获得积分10
7秒前
8秒前
清秀的SONG完成签到 ,获得积分10
9秒前
霍不言完成签到,获得积分10
9秒前
10秒前
诸笑白发布了新的文献求助10
10秒前
健忘捕发布了新的文献求助10
10秒前
10秒前
整齐代真完成签到 ,获得积分10
10秒前
11秒前
Tingting完成签到 ,获得积分10
12秒前
Fionaaaa完成签到,获得积分10
12秒前
阿吧发布了新的文献求助10
14秒前
14秒前
问之发布了新的文献求助30
15秒前
15秒前
Fionaaaa发布了新的文献求助50
16秒前
Qinpy完成签到,获得积分10
17秒前
科研通AI5应助微风轻起采纳,获得10
17秒前
17秒前
汉堡包应助zoloft采纳,获得10
17秒前
沙河口大长硬完成签到,获得积分10
18秒前
爱笑的冷风完成签到 ,获得积分10
18秒前
宇文数学发布了新的文献求助10
19秒前
阿吧完成签到,获得积分10
19秒前
苏苏发布了新的文献求助10
19秒前
阿笨猫完成签到,获得积分10
21秒前
21秒前
22秒前
会飞的鱼完成签到 ,获得积分10
22秒前
Beyond完成签到,获得积分10
23秒前
25秒前
曾经的路人完成签到,获得积分20
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849