Model compression and privacy preserving framework for federated learning

计算机科学 上传 瓶颈 加密 同态加密 无线网络 MNIST数据库 无线 个性化 数据压缩 人工神经网络 数据挖掘 计算机网络 人工智能 分布式计算 机器学习 嵌入式系统 电信 万维网 操作系统
作者
Xi Zhu,Junbo Wang,Wuhui Chen,Kento Sato
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:140: 376-389 被引量:5
标识
DOI:10.1016/j.future.2022.10.026
摘要

Federated learning (FL) as a collaborative learning paradigm has attracted extensive attention due to its characteristic of privacy preserving, in which the clients train a shared neural network model collaboratively by their local dataset and upload their model parameters merely instead of original data by wireless network in the whole training process. Because FL reduces transmission significantly, it can further meets the efficiency and security of the next generation wireless system. Although FL has reduced the size of information that needs to be transmitted, the update of model parameters still suffers from privacy leakage and communication bottleneck especially in wireless networks. To address the problem of privacy and communication, this paper proposes a model compression based FL framework. Firstly, the designed model compression framework provides effective support for efficient and secure model parameters updating in FL while keeping the personalization of all clients. Then, the proposed perturbed model compression method can further reduce the size of the model and protect the privacy of the model without sacrificing much accuracy. Besides, it also facilitates the simultaneous execution of decryption and decompressing operations by reconstruction algorithm on encrypted and compressed model parameters which is obtained by the proposed perturbed model compression method. Finally, the illustrative results demonstrate that the proposed model compression based FL framework can significantly reduce the number of model parameters for uploading with a strong privacy preservation property. For example, when the compression ratio is 0.0953 (i.e., only 9.53% of the parameters are uploaded), the accuracy of MNIST achieves 97% while the accuracy without compression is 98%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
蚂蚁牙黑发布了新的文献求助10
3秒前
3秒前
von17完成签到,获得积分10
3秒前
茕凡桃七完成签到,获得积分10
3秒前
RAmos_1982完成签到,获得积分10
4秒前
4秒前
von17发布了新的文献求助10
6秒前
科研通AI5应助wyk采纳,获得10
6秒前
Tsui发布了新的文献求助10
7秒前
Qing完成签到,获得积分10
9秒前
骄傲慕尼黑完成签到,获得积分10
9秒前
ycjfs1995发布了新的文献求助10
9秒前
askldj完成签到 ,获得积分10
10秒前
13秒前
布吉岛呀完成签到 ,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
王磊发布了新的文献求助10
19秒前
熠熠关注了科研通微信公众号
20秒前
21秒前
蚂蚁牙黑完成签到,获得积分10
22秒前
刚国忠发布了新的文献求助10
25秒前
26秒前
27秒前
Mark完成签到 ,获得积分10
30秒前
31秒前
NexusExplorer应助May采纳,获得10
31秒前
Casson发布了新的文献求助10
33秒前
xvzhenyuan发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090