Model compression and privacy preserving framework for federated learning

计算机科学 上传 瓶颈 加密 同态加密 无线网络 MNIST数据库 无线 个性化 数据压缩 人工神经网络 数据挖掘 计算机网络 人工智能 分布式计算 机器学习 嵌入式系统 电信 万维网 操作系统
作者
Xi Zhu,Junbo Wang,Wuhui Chen,Kento Sato
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:140: 376-389 被引量:5
标识
DOI:10.1016/j.future.2022.10.026
摘要

Federated learning (FL) as a collaborative learning paradigm has attracted extensive attention due to its characteristic of privacy preserving, in which the clients train a shared neural network model collaboratively by their local dataset and upload their model parameters merely instead of original data by wireless network in the whole training process. Because FL reduces transmission significantly, it can further meets the efficiency and security of the next generation wireless system. Although FL has reduced the size of information that needs to be transmitted, the update of model parameters still suffers from privacy leakage and communication bottleneck especially in wireless networks. To address the problem of privacy and communication, this paper proposes a model compression based FL framework. Firstly, the designed model compression framework provides effective support for efficient and secure model parameters updating in FL while keeping the personalization of all clients. Then, the proposed perturbed model compression method can further reduce the size of the model and protect the privacy of the model without sacrificing much accuracy. Besides, it also facilitates the simultaneous execution of decryption and decompressing operations by reconstruction algorithm on encrypted and compressed model parameters which is obtained by the proposed perturbed model compression method. Finally, the illustrative results demonstrate that the proposed model compression based FL framework can significantly reduce the number of model parameters for uploading with a strong privacy preservation property. For example, when the compression ratio is 0.0953 (i.e., only 9.53% of the parameters are uploaded), the accuracy of MNIST achieves 97% while the accuracy without compression is 98%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hbgcld发布了新的文献求助10
2秒前
简单驳完成签到,获得积分10
4秒前
5秒前
hanhan完成签到 ,获得积分10
5秒前
CodeCraft应助郭子朋采纳,获得10
5秒前
不科学的呵呵完成签到,获得积分10
7秒前
背后访风完成签到 ,获得积分10
8秒前
10秒前
苟活着发布了新的文献求助20
10秒前
Ting完成签到 ,获得积分10
10秒前
11秒前
11秒前
Orange应助hbgcld采纳,获得10
12秒前
LRX发布了新的文献求助10
13秒前
13秒前
堂吉诃德完成签到,获得积分10
14秒前
14秒前
好好好发布了新的文献求助10
15秒前
金平卢仙发布了新的文献求助10
15秒前
hsj完成签到,获得积分10
16秒前
科研通AI2S应助miemie采纳,获得30
18秒前
18秒前
21秒前
郭子朋完成签到,获得积分10
21秒前
xhtt发布了新的文献求助10
21秒前
橙子fy16_发布了新的文献求助10
22秒前
绳网用户17117496完成签到,获得积分10
22秒前
zq完成签到 ,获得积分10
23秒前
25秒前
27秒前
kingwill应助ZZ采纳,获得30
28秒前
30秒前
justsayit完成签到 ,获得积分10
30秒前
LX2xeK发布了新的文献求助10
31秒前
tzh发布了新的文献求助10
32秒前
黄寒聪发布了新的文献求助10
35秒前
斯文墨镜完成签到,获得积分10
38秒前
ding应助VIncent采纳,获得10
38秒前
曾经如凡完成签到,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884