Ultra‐High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers

材料科学 芳纶 纳米纤维 极限抗拉强度 韧性 复合材料 纺纱 模数 纳米尺度 制作 热稳定性 纳米技术 纤维 化学工程 医学 替代医学 病理 工程类
作者
Hyun Chan Kim,Henry A. Sodano
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (4) 被引量:27
标识
DOI:10.1002/adfm.202208661
摘要

Abstract Assembling nanoscale building blocks with reduced defects has emerged as a promising approach to exploit nanomaterials in the fabrication of simultaneously strong and tough architectures at larger scales. Aramid nanofibers (ANFs), a type of organic nanobuilding block, have been spotlighted due to their superior mechanical properties and thermal stability. However, no breakthrough research has been conducted on the high mechanical properties of a structure composed of ANFs. Here, assembling ANFs into macroscale fiber using a simultaneous protonation and wet‐spinning process is studied to reduce defects and control disorder. The ANF‐assembled fibers consist of hierarchically aligned nanofibers that behave as a defective law structure, making it possible to reach a Young's modulus of 53.15 ± 8.98 GPa, a tensile strength of 1,353.64 ± 92.98 MPa, and toughness of 128.66 ± 14.13 MJ m −3 . Compared to commercial aramid fibers, the fibers exhibit ≈1.6 times greater toughness while also providing specific energy to break as 93 J g −1 . Furthermore, this shows recyclability of the ANF assembly by retaining ≈94% of the initial mechanical properties. This study demonstrates a facile process to produce high stiffness and strength fibers composed of ANFs that possess significantly greater toughness than commercial synthetic fibers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
学分完成签到 ,获得积分10
11秒前
学术小垃圾完成签到,获得积分10
13秒前
眼睛大的剑心完成签到 ,获得积分10
17秒前
最美夕阳红完成签到,获得积分10
18秒前
z_king_d_23完成签到,获得积分10
19秒前
风秋杨完成签到 ,获得积分0
25秒前
111完成签到 ,获得积分10
34秒前
34秒前
hyl-tcm完成签到 ,获得积分10
39秒前
栗子完成签到 ,获得积分10
39秒前
634301059完成签到 ,获得积分10
44秒前
今天开心吗完成签到 ,获得积分10
45秒前
46秒前
从容的水壶完成签到 ,获得积分10
56秒前
劲秉应助飞飞飞采纳,获得30
57秒前
JHL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
香蕉子骞完成签到 ,获得积分10
1分钟前
cc2713206完成签到,获得积分0
1分钟前
黑糖珍珠完成签到 ,获得积分10
1分钟前
Joanne完成签到 ,获得积分10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
Spring完成签到,获得积分10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
祭酒完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
蒲蒲完成签到 ,获得积分10
2分钟前
zz完成签到 ,获得积分10
2分钟前
潇潇完成签到,获得积分10
2分钟前
roundtree完成签到 ,获得积分0
2分钟前
kyokyoro完成签到,获得积分10
2分钟前
2分钟前
喵了个咪完成签到 ,获得积分10
2分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
科研通AI2S应助shetianlang采纳,获得10
2分钟前
五月完成签到 ,获得积分10
2分钟前
uuuu完成签到 ,获得积分10
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736714
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020241
捐赠科研通 2997394
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656