Novel CuO/Cu2(V2O7)/V2O5 composite membrane as an efficient catalyst for the activation of persulfate toward ciprofloxacin degradation

过硫酸盐 纳米复合材料 纳米材料 降级(电信) 催化作用 化学工程 化学 复合数 中心组合设计 响应面法 材料科学 色谱法 有机化学 复合材料 电信 工程类 生物化学 计算机科学
作者
Yongtao Xue,Mohammadreza Kamali,Yu Xiaobin,Lise Appels,Raf Dewil
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:455: 140201-140201 被引量:28
标识
DOI:10.1016/j.cej.2022.140201
摘要

In this work, a novel nanocomposite of CuO/Cu2(V2O7)/V2O5 was successfully synthesized via a thermal conversion method. The prepared nanocomposite demonstrated a high efficiency with a degradation rate constant of 0.07 min−1 for ciprofloxacin (CIP) compared to 0.014 min−1 for CuO and 0.03 min−1 for V2O5 in the presence of persulfate (PS). Meanwhile, the nanocomposite was employed in fabricating a membrane to solve the recycling and reuse issue of nanomaterials. The nanomaterial-decorated membrane (NDM) represented an abundant pore structure with a relatively high surface area of 12 m2/g. Response surface methodology was applied to investigate the effects of different operational parameters on CIP degradation using the NDM/PS system. The results revealed the following order of importance for the different parameters: membrane weight > PS concentration > CIP concentration > initial pH. The degradation mechanisms indicated that singlet oxygen is a crucial activated species for CIP degradation. It was also discussed and suggested that the synergistic effect between Cu and V played a key role in the activation of PS. Furthermore, eight degradation products were identified using ultrahigh-performance liquid chromatography combined with high-resolution mass spectrometry (UHPLC-QTOF-MS). The results also led to the identification of possible degradation pathways. Finally, the toxicity of intermediates was evaluated by ECOSAR calculation. This study develops a novel catalytic membrane with high efficiency and stability for the degradation of CIP in the presence of PS, which can be used to overcome issues regarding the collection and reuse of the materials in real wastewater treatment applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sansan发布了新的文献求助10
1秒前
斯文莺发布了新的文献求助10
1秒前
Reid完成签到 ,获得积分10
1秒前
kmelo发布了新的文献求助10
2秒前
淡然夏天关注了科研通微信公众号
2秒前
科研小呆瓜完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
4秒前
科研通AI6应助迷人书蝶采纳,获得10
5秒前
李健应助阿雷采纳,获得10
5秒前
科研通AI6应助xixi采纳,获得10
6秒前
linlinyilulvdeng完成签到,获得积分10
6秒前
科研通AI2S应助尹辉采纳,获得10
6秒前
爱听歌老1完成签到,获得积分10
6秒前
7秒前
沈若南应助灯灯采纳,获得10
7秒前
8秒前
8秒前
8秒前
111发布了新的文献求助10
8秒前
8秒前
8秒前
谨慎的灵完成签到 ,获得积分20
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
勇敢牛牛发布了新的文献求助10
10秒前
10秒前
乐正飞风完成签到,获得积分20
11秒前
12秒前
12秒前
xueluxin完成签到 ,获得积分10
12秒前
12秒前
MKY发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565