MUFusion: A general unsupervised image fusion network based on memory unit

计算机科学 显著性(神经科学) 融合 图像融合 图像(数学) 人工智能 融合规则 过程(计算) 基本事实 模式识别(心理学) 语言学 操作系统 哲学
作者
Chunyang Cheng,Tianyang Xu,Xiao‐Jun Wu
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 80-92 被引量:55
标识
DOI:10.1016/j.inffus.2022.11.010
摘要

Existing image fusion approaches are committed to using a single deep network to solve different image fusion problems, achieving promising performance in recent years. However, devoid of the ground-truth output, in these methods, only the appearance from source images can be exploited during the training process to generate the fused images, resulting in suboptimal solutions. To this end, we advocate a self-evolutionary training formula by introducing a novel memory unit architecture (MUFusion). In this unit, specifically, we utilize the intermediate fusion results obtained during the training process to further collaboratively supervise the fused image. In this way, our fusion results can not only learn from the original input images, but also benefit from the intermediate output of the network itself. Furthermore, an adaptive unified loss function is designed based on this memory unit, which is composed of two loss items, i.e., content loss and memory loss. In particular, the content loss is calculated based on the activity level maps of source images, which can constrain the output image to contain specific information. On the other hand, the memory loss is obtained based on the previous output of our model, which is utilized to force the network to yield fusion results with higher quality. Considering the handcrafted activity level maps cannot consistently reflect the accurate salience judgement, we put two adaptive weight items between them to prevent this degradation phenomenon. In general, our MUFusion can effectively handle a series of image fusion tasks, including infrared and visible image fusion, multi-focus image fusion, multi-exposure image fusion, and medical image fusion. Particularly, the source images are concatenated in the channel dimension. After that, a densely connected feature extraction network with two scales is used to extract the deep features of the source images. Following this, the fusion result is obtained by two feature reconstruction blocks with skip connections from the feature extraction network. Qualitative and quantitative experiments on 4 image fusion subtasks demonstrate the superiority of our MUFusion, compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alan发布了新的文献求助10
1秒前
阿巴阿巴救救呜呜完成签到,获得积分10
2秒前
JZ1640完成签到,获得积分10
2秒前
3秒前
踏实以丹完成签到,获得积分10
3秒前
3秒前
Jasper应助机智羞花采纳,获得10
6秒前
怡然凝安完成签到,获得积分20
6秒前
9秒前
pure发布了新的文献求助10
10秒前
fool完成签到,获得积分10
10秒前
充电宝应助美羊羊采纳,获得10
11秒前
777567完成签到,获得积分10
11秒前
11秒前
不羁的红枫叶完成签到 ,获得积分10
12秒前
xiong完成签到 ,获得积分10
13秒前
万玉儿完成签到,获得积分10
13秒前
hihujnvf发布了新的文献求助10
13秒前
鲁花花完成签到,获得积分10
14秒前
15秒前
CodeCraft应助心灵美的代柔采纳,获得10
17秒前
可爱的摩托完成签到,获得积分10
17秒前
17秒前
mdydgo发布了新的文献求助10
18秒前
GS115发布了新的文献求助10
18秒前
wei123发布了新的文献求助10
19秒前
19秒前
19秒前
是美羊羊完成签到,获得积分10
19秒前
123发布了新的文献求助10
20秒前
Serein完成签到,获得积分10
21秒前
明理千雁完成签到 ,获得积分10
21秒前
鹿靡完成签到 ,获得积分10
22秒前
Alan完成签到,获得积分10
23秒前
机智羞花发布了新的文献求助10
23秒前
ygx完成签到,获得积分10
23秒前
24秒前
saberLee发布了新的文献求助10
25秒前
快乐二方完成签到 ,获得积分10
26秒前
FashionBoy应助李昕123采纳,获得10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721