MUFusion: A general unsupervised image fusion network based on memory unit

计算机科学 显著性(神经科学) 融合 图像融合 图像(数学) 人工智能 融合规则 过程(计算) 基本事实 模式识别(心理学) 语言学 操作系统 哲学
作者
Chunyang Cheng,Tianyang Xu,Xiao‐Jun Wu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:92: 80-92 被引量:82
标识
DOI:10.1016/j.inffus.2022.11.010
摘要

Existing image fusion approaches are committed to using a single deep network to solve different image fusion problems, achieving promising performance in recent years. However, devoid of the ground-truth output, in these methods, only the appearance from source images can be exploited during the training process to generate the fused images, resulting in suboptimal solutions. To this end, we advocate a self-evolutionary training formula by introducing a novel memory unit architecture (MUFusion). In this unit, specifically, we utilize the intermediate fusion results obtained during the training process to further collaboratively supervise the fused image. In this way, our fusion results can not only learn from the original input images, but also benefit from the intermediate output of the network itself. Furthermore, an adaptive unified loss function is designed based on this memory unit, which is composed of two loss items, i.e., content loss and memory loss. In particular, the content loss is calculated based on the activity level maps of source images, which can constrain the output image to contain specific information. On the other hand, the memory loss is obtained based on the previous output of our model, which is utilized to force the network to yield fusion results with higher quality. Considering the handcrafted activity level maps cannot consistently reflect the accurate salience judgement, we put two adaptive weight items between them to prevent this degradation phenomenon. In general, our MUFusion can effectively handle a series of image fusion tasks, including infrared and visible image fusion, multi-focus image fusion, multi-exposure image fusion, and medical image fusion. Particularly, the source images are concatenated in the channel dimension. After that, a densely connected feature extraction network with two scales is used to extract the deep features of the source images. Following this, the fusion result is obtained by two feature reconstruction blocks with skip connections from the feature extraction network. Qualitative and quantitative experiments on 4 image fusion subtasks demonstrate the superiority of our MUFusion, compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的天思完成签到,获得积分10
刚刚
刚刚
LIN完成签到,获得积分10
刚刚
JamesPei应助缓慢易云采纳,获得10
1秒前
CodeCraft应助Laraine采纳,获得10
2秒前
2秒前
卉酱完成签到,获得积分10
2秒前
Kate完成签到,获得积分10
2秒前
林夏发布了新的文献求助10
2秒前
小思雅发布了新的文献求助10
2秒前
ZJCGD发布了新的文献求助10
3秒前
踹脸大妈完成签到,获得积分10
3秒前
佳仪完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
Akim应助哎呀呀采纳,获得10
6秒前
sljzhangbiao11完成签到,获得积分10
7秒前
宋宋关注了科研通微信公众号
7秒前
JamesPei应助12334采纳,获得10
7秒前
7秒前
zzzzz给zzzzz的求助进行了留言
7秒前
梦在远方完成签到 ,获得积分10
7秒前
8秒前
烟花应助牛牛采纳,获得10
8秒前
满意的山水完成签到,获得积分20
10秒前
10秒前
lcx66666发布了新的文献求助10
10秒前
DONG完成签到,获得积分10
10秒前
完美世界应助十六采纳,获得10
10秒前
0411345完成签到,获得积分10
10秒前
11秒前
猪嗝铁铁完成签到 ,获得积分10
11秒前
无尽夏完成签到,获得积分10
11秒前
累哥发布了新的文献求助10
11秒前
YK发布了新的文献求助10
11秒前
Caicai发布了新的文献求助10
11秒前
kasumin发布了新的文献求助10
12秒前
skr完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582