细胞生物学
脂肪组织
细胞外小泡
生物
基因表达
细胞外
干细胞
表型
缺血
医学
内科学
内分泌学
基因
生物化学
作者
Finosh G. Thankam,Sharona Sedighim,Rebecca Kuan,Devendra K. Agrawal
标识
DOI:10.1016/j.trsl.2022.10.004
摘要
The present study hypothesizes that the ischemic insults activate epicardial adipose tissue-derived stem cells (EATDS) to secrete extracellular vesicles (EVs) packed with regenerative mediators to alter the gene expression in cardiac fibroblasts (CF). EATDS and CF were isolated from hyperlipidemic microswine and EVs were harvested from control, simulated ischemia (ISC) and ischemia-reperfusion (ISC/R) groups. The in vitro interaction between ISC–EVs and CF resulted in the upregulation of cardiomyocyte-specific transcription factors including GATA4, Nkx2.5, IRX4, and TBX5 in CF and the healing marker αSMA and the downregulation of fibroblast biomarkers such as vimentin, FSP1, and podoplanin and the cardiac biomarkers such as troponin-I and connexin-43. These results suggest a cardiomyocyte-like phenotype as confirmed by immunostaining and Western blot. The LC-MS/MS analysis of ISC–EVs LGALS1, PRDX2, and CCL2 to be the potent protein mediators which are intimately involved in versatile regenerative processes and connected with a diverse array of regenerative genes. Moreover, the LGALS1+, PRDX2+, and CCL2+ EATDS phenotypes were deciphered at single cell resolution revealing corresponding sub-populations with superior healing potential. Overall, the findings unveiled the healing potential of EATDS-derived EVs and sub-populations of regenerative EATDS promising novel translational opportunities in improved cardiac healing following ischemic injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI