摘要
Chapter 6 2D Transition Metal Carbides (MXenes) for Applications in Electrocatalysis Devika Laishram, Devika Laishram Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorDivya Kumar, Divya Kumar Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorKiran P. Shejale, Kiran P. Shejale Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorBhagirath Saini, Bhagirath Saini Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this author Harikrishna, Harikrishna Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorR. Krishnapriya, R. Krishnapriya Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorRakesh Kumar Sharma, Rakesh Kumar Sharma Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this author Devika Laishram, Devika Laishram Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorDivya Kumar, Divya Kumar Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorKiran P. Shejale, Kiran P. Shejale Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorBhagirath Saini, Bhagirath Saini Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this author Harikrishna, Harikrishna Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorR. Krishnapriya, R. Krishnapriya Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this authorRakesh Kumar Sharma, Rakesh Kumar Sharma Sustainable Materials and Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, IndiaSearch for more papers by this author Book Editor(s):Putla Sudarsanam, Putla Sudarsanam Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana, IndiaSearch for more papers by this authorYusuke Yamauchi, Yusuke Yamauchi Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, AustraliaSearch for more papers by this authorPankaj Bharali, Pankaj Bharali Department of Chemical Sciences, Tezpur University, Nappam, Assam, IndiaSearch for more papers by this author First published: 11 November 2022 https://doi.org/10.1002/9781119772057.ch6 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Among many two-dimensional (2D) materials, MXenes have been demonstrated both by density functional theory (DFT) and experimental research as potential electrocatalysts due to their inherent properties, such as surface termination that can positively influence the properties of MXene and its hybrids, super hydrophilicity, and excellent electrical conductivity. Here, MXene synthesis from its MAX phase, modifications in MXenes such as MXene hybrids, variations in MXenes, doping with heteroatom, etc., have been discussed. The optimization effect as a result of these modifications has reflected on the performance of these MXenes as electrocatalysts during applications in oxygen evolution/reduction reaction (OER and ORR), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), CO 2 reduction reaction (CRR), and methanol oxidation reaction (MOR), which has also been discussed comprehensively. This chapter focuses on the material design and various methods of enhancements of MXene-based materials for electrochemical solutions to find a practical strategy for clean energy conversion. References Gogotsi , Y. and Anasori , B. ( 2019 ). The rise of MXenes . ACS Nano 13 ( 8 ): 8491 – 8494 . Anasori , B. , Lukatskaya , M.R. , and Gogotsi , Y. ( 2017 ). 2D metal carbides and nitrides (MXenes) for energy storage . Nature Reviews Materials 2 ( 2 ): 16098 . Levi , M.D. , Lukatskaya , M.R. , Sigalov , S. et al. ( 2015 ). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements . Advanced Energy Materials 5 ( 1 ): 1400815 . Shahzad , F. , Alhabeb , M. , Hatter , C.B. et al. ( 2016 ). Electromagnetic interference shielding with 2D transition metal carbides (MXenes) . Science 353 ( 6304 ): 1137 – 1140 . Tong , Y. , He , M. , Zhou , Y. et al. ( 2018 ). Hybridizing polypyrrole chains with laminated and two-dimensional Ti 3 C 2 T x toward high-performance electromagnetic wave absorption . Applied Surface Science 434 : 283 – 293 . Cheng , L. , Wang , X. , Gong , F. et al. ( 2020 ). 2D nanomaterials for cancer theranostic applications . Advanced Materials 32 ( 13 ): 1902333 . Mohammadpour , Z. and Majidzadeh-A , K. ( 2020 ). Applications of two-dimensional nanomaterials in breast cancer theranostics . ACS Biomaterials Science and Engineering 6 ( 4 ): 1852 – 1873 . Xu , B. , Zhu , M. , Zhang , W. et al. ( 2016 ). Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity . Advanced Materials 28 ( 17 ): 3333 – 3339 . Cai , Y. , Shen , J. , Ge , G. et al. ( 2018 ). Stretchable Ti 3 C 2 T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range . ACS Nano 12 : 56 – 62 . Han , X. , Huang , J. , Lin , H. et al. ( 2018 ). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer . Advanced Healthcare Materials 7 ( 9 ): 1701394 . Lin , H. , Gao , S. , Dai , C. et al. ( 2017 ). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows . Journal of the American Chemical Society 139 ( 45 ): 16235 – 16247 . Liu , A. , Liang , X. , Ren , X. et al. ( 2020 ). Recent progress in MXene-based materials: potential high-performance electrocatalysts . Advanced Functional Materials 30 ( 38 ): 2003437 . Barsoum , M.W. and El-Raghy , T. ( 1996 ). Synthesis and characterization of a remarkable ceramic: Ti 3 SiC 2 . Journal of the American Ceramic Society 79 ( 7 ): 1953 – 1956 . Amini , S. , Barsoum , M.W. , and El-Raghy , T. ( 2007 ). Synthesis and mechanical properties of fully dense Ti 2 SC . Journal of the American Ceramic Society 90 ( 12 ): 3953 – 3958 . Luo , Y. , Zheng , Z. , Mei , X. , and Xu , C. ( 2008 ). Growth mechanism of Ti 3 SiC 2 single crystals by in-situ reaction of polycarbosilane and metal titanium with CaF 2 additive . Journal of Crystal Growth 310 ( 14 ): 3372 – 3375 . Yin , X. , Travitzky , N. , and Greil , P. ( 2007 ). Three-dimensional printing of nanolaminated Ti 3 AlC 2 toughened TiAl 3 –Al 2 O 3 composites . Journal of the American Ceramic Society 90 ( 7 ): 2128 – 2134 . Tian , W. , Vanmeensel , K. , Wang , P. et al. ( 2007 ). Synthesis and characterization of Cr 2 AlC ceramics prepared by spark plasma sintering . Materials Letters 61 ( 22 ): 4442 – 4445 . Eklund , P. , Beckers , M. , Jansson , U. et al. ( 2010 ). The M n+1 AX n phases: materials science and thin-film processing . Thin Solid Films 518 ( 8 ): 1851 – 1878 . Frodelius , J. , Sonestedt , M. , Björklund , S. et al. ( 2008 ). Ti 2 AlC coatings deposited by high velocity oxy-fuel spraying . Surface and Coatings Technology 202 ( 24 ): 5976 – 5981 . Rech , S. , Surpi , A. , Vezzù , S. et al. ( 2013 ). Cold-spray deposition of Ti 2 AlC coatings . Vacuum 94 : 69 – 73 . Gutzmann , H. , Gärtner , F. , Höche , D. et al. ( 2013 ). Cold spraying of Ti 2 AlC MAX-phase coatings . Journal of Thermal Spray Technology 22 ( 2 ): 406 – 412 . Pasumarthi , V. , Chen , Y. , Bakshi , S.R. , and Agarwal , A. ( 2009 ). Reaction synthesis of Ti 3 SiC 2 phase in plasma sprayed coating . Journal of Alloys and Compounds 484 : 113 – 117 . Frodelius , J. , Johansson , E.M. , Córdoba , J.M. et al. ( 2011 ). Annealing of thermally sprayed Ti 2 AlC coatings . International Journal of Applied Ceramic Technology 8 ( 1 ): 74 – 84 . Nickl , J.J. , Schweitzer , K.K. , and Luxenberg , P. ( 1972 ). Gasphasenabscheidung im system Ti3Si2C . Journal of the Less Common Metals 26 ( 3 ): 335 – 353 . Racault , C. , Langlais , F. , Naslain , R. , and Kihn , Y. ( 1994 ). On the chemical vapour deposition of Ti 3 SiC 2 from TiCl 4 -SiCl 4 -CH 4 -H 2 gas mixtures . Journal of Materials Science 29 ( 15 ): 3941 – 3948 . Pickering , E. , Lackey , W.J. , and Crain , S. ( 2000 ). CVD of Ti 3 SiC 2 . Chemical Vapor Deposition 6 ( 6 ): 289 – 295 . Goto , T. and Hirai , T. ( 1987 ). Chemically vapor deposited Ti 3 SiC 2 . Materials Research Bulletin 22 ( 9 ): 1195 – 1201 . Fakih , H. , Jacques , S. , Berthet , M.P. et al. ( 2006 ). The growth of Ti 3 SiC 2 coatings onto SiC by reactive chemical vapor deposition using H 2 and TiCl 4 . Surface and Coatings Technology 201 ( 6 ): 3748 – 3755 . Fakih , H. , Jacques , S. , Dezellus , O. et al. ( 2008 ). Phase equilibria and reactive chemical vapor deposition (RCVD) of Ti 3 SiC 2 . Journal of Phase Equilibria and Diffusion 29 ( 3 ): 239 – 246 . Wilhelmsson , O. , Eklund , P. , Högberg , H. et al. ( 2008 ). Structural, electrical and mechanical characterization of magnetron-sputtered V–Ge–C thin films . Acta Materialia 56 ( 11 ): 2563 – 2569 . Eklund , P. , Bugnet , M. , Mauchamp , V. et al. ( 2011 ). Epitaxial growth and electrical transport properties of Cr 2 GeC thin films . Physical Review B 84 ( 7 ): 075424 . Magnuson , M. , Mattesini , M. , Bugnet , M. , and Eklund , P. ( 2015 ). The origin of anisotropy and high density of states in the electronic structure of Cr 2 GeC by means of polarized soft X-ray spectroscopy and ab initio calculations . Journal of Physics: Condensed Matter 27 ( 415 ): 501 . Walter , C. , Sigumonrong , D.P. , El-Raghy , T. , and Schneider , J.M. ( 2006 ). Towards large area deposition of Cr 2 AlC on steel . Thin Solid Films 515 ( 2 ): 389 – 393 . Eklund , P. , Beckers , M. , Frodelius , J. et al. ( 2007 ). Magnetron sputtering of Ti 3 SiC 2 thin films from a compound target . Journal of Vacuum Science and Technology A 25 : 1381 – 1388 . Frodelius , J. , Eklund , P. , Beckers , M. et al. ( 2010 ). Sputter deposition from a Ti 2 AlC target: process characterization and conditions for growth of Ti 2 AlC . Thin Solid Films 518 ( 6 ): 1621 – 1626 . Scabarozi , T.H. , Hettinger , J.D. , Lofland , S.E. et al. ( 2011 ). Epitaxial growth and electrical-transport properties of Ti 7 Si 2 C 5 thin films synthesized by reactive sputter-deposition . Scripta Materialia 65 ( 9 ): 811 – 814 . Su , R. , Zhang , H. , O'Connor , D.J. et al. ( 2016 ). Deposition and characterization of Ti 2 AlC MAX phase and Ti 3 AlC thin films by magnetron sputtering . Materials Letters 179 : 194 – 197 . Rosén , J. , Ryves , L. , Persson , P.O.Å. , and Bilek , M.M.M. ( 2007 ). Deposition of epitaxial Ti 2 AlC thin films by pulsed cathodic arc . Journal of Applied Physics 101 ( 5 ): 056101 . Wang , Z. , Saito , M. , Tsukimoto , S. , and Ikuhara , Y. ( 2009 ). Interface atomic-scale structure and its impact on quantum electron transport . Advanced Materials 21 ( 48 ): 4966 – 4969 . Dolique , V. , Jaouen , M. , Cabioc'h , T. et al. ( 2008 ). Formation of (Ti,Al)N∕Ti 2 AlN multilayers after annealing of TiN∕TiAl(N) multilayers deposited by ion beam sputtering . Journal of Applied Physics 103 ( 8 ): 083527 . Fashandi , H. , Dahlqvist , M. , Lu , J. et al. ( 2017 ). Synthesis of Ti 3 AuC 2 , Ti 3 Au 2 C 2 and Ti 3 IrC 2 by noble metal substitution reaction in Ti 3 SiC 2 for high-temperature-stable Ohmic contacts to SiC . Nature Materials 16 ( 8 ): 814 – 818 . Fashandi , H. , Lai , C.C. , Dahlqvist , M. et al. ( 2017 ). Ti 2 Au 2 C and Ti 3 Au 2 C 2 formed by solid state reaction of gold with Ti 2 AlC and Ti 3 AlC 2 . Chemical Communications 53 ( 69 ): 9554 – 9557 . Lai , C.-C. , Fashandi , H. , Lu , J. et al. ( 2017 ). Phase formation of nanolaminated Mo 2 AuC and Mo 2 (Au 1−x Ga x ) 2 C by a substitutional reaction within Au-capped Mo 2 GaC and Mo 2 Ga 2 C thin films . Nanoscale 9 ( 45 ): 17681 – 17687 . Lai , C.-C. , Petruhins , A. , Lu , J. et al. ( 2017 ). Thermally induced substitutional reaction of Fe into Mo 2 GaC thin films . Materials Research Letters 5 ( 8 ): 533 – 539 . Lai , C.-C. , Tao , Q. , Fashandi , H. et al. ( 2018 ). Magnetic properties and structural characterization of layered (Cr 0.5 Mn 0.5 ) 2 AuC synthesized by thermally induced substitutional reaction in (Cr 0.5 Mn 0.5 ) 2 GaC . APL Materials 6 ( 2 ): 026104 . Zhou , Y. , Sun , Z. , Chen , S. , and Zhang , Y. ( 1998 ). In-situ hot pressing/solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics . Materials Research Innovations 2 ( 3 ): 142 – 146 . Yongming , L. , Wei , P. , Shuqin , L. et al. ( 2002 ). Synthesis of high-purity Ti 3 SiC 2 polycrystals by hot-pressing of the elemental powders . Materials Letters 52 ( 4 ): 245 – 247 . Hashimoto , S. , Takeuchi , M. , Inoue , K. et al. ( 2008 ). Pressureless sintering and mechanical properties of titanium aluminum carbide . Materials Letters 62 ( 10 ): 1480 – 1483 . Riley , D.P. , Kisi , E.H. , and Phelan , D. ( 2006 ). SHS of Ti 3 SiC 2 : ignition temperature depression by mechanical activation . Journal of the European Ceramic Society 26 ( 6 ): 1051 – 1058 . Dezellus , O. , Gardiola , B. , Andrieux , J. , and Lay , S. ( 2015 ). Experimental evidence of copper insertion in a crystallographic structure of Ti 3 SiC 2 MAX phase . Scripta Materialia 104 : 17 – 20 . Mingxing , A. , Hongxiang , Z. , Yang , Z. et al. ( 2006 ). Synthesis of Ti 3 AlC 2 powders using Sn as an additive . Journal of the American Ceramic Society 89 ( 3 ): 1114 – 1117 . Zhang , J. , Wang , L. , Jiang , W. , and Chen , L. ( 2007 ). Fabrication of high purity Ti 3 SiC 2 from Ti/Si/C with the aids of Al by spark plasma sintering . Journal of Alloys and Compounds 437 ( 1 ): 203 – 207 . Barsoum , M.W. and Eklund , P. ( 2019 ). The Mn + 1AXn phases: the precursors for MXenes . In: 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (ed. B. Anasori and Y. Gogotsi ), 15 – 35 . Cham : Springer International Publishing . Liu , J. , Peng , W. , Li , Y. et al. ( 2020 ). 2D MXene-based materials for electrocatalysis . Transactions of Tianjin University 26 ( 3 ): 149 – 171 . Wang , H. and Lee , J.-M. ( 2020 ). Recent advances in structural engineering of MXene electrocatalysts . Journal of Materials Chemistry A 8 ( 21 ): 10604 – 10624 . Naguib , M. , Kurtoglu , M. , Presser , V. et al. ( 2011 ). Two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2 . Advanced Materials 23 ( 37 ): 4248 – 4253 . Naguib , M. , Mashtalir , O. , Carle , J. et al. ( 2012 ). Two-dimensional transition metal carbides . ACS Nano 6 ( 2 ): 1322 – 1331 . Ghidiu , M. , Lukatskaya , M.R. , Zhao , M.-Q. et al. ( 2014 ). Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance . Nature 516 ( 7529 ): 78 – 81 . Li , G. , Tan , L. , Zhang , Y. et al. ( 2017 ). Highly efficiently delaminated single-layered MXene nanosheets with large lateral size . Langmuir 33 ( 36 ): 9000 – 9006 . Pang , S.-Y. , Wong , Y.-T. , Yuan , S. et al. ( 2019 ). Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials . Journal of the American Chemical Society 141 ( 24 ): 9610 – 9616 . Li , M. , Lu , J. , Luo , K. et al. ( 2019 ). Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes . Journal of the American Chemical Society 141 ( 11 ): 4730 – 4737 . Yang , X. , Gao , N. , Zhou , S. , and Zhao , J. ( 2018 ). MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics . Physical Chemistry Chemical Physics 20 ( 29 ): 19390 – 19397 . Yuan , W. , Cheng , L. , An , Y. et al. ( 2018 ). MXene nanofibers as highly active catalysts for hydrogen evolution reaction . ACS Sustainable Chemistry and Engineering 6 ( 7 ): 8976 – 8982 . Liu , J. , Liu , Y. , Xu , D. et al. ( 2019 ). Hierarchical "nanoroll" like MoS 2 /Ti 3 C 2 T x hybrid with high electrocatalytic hydrogen evolution activity . Applied Catalysis B: Environmental 241 : 89 – 94 . Wu , X. , Wang , Z. , Yu , M. et al. ( 2017 ). Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability . Advanced Materials 29 ( 24 ): 1607017 . Xiu , L. , Wang , Z. , Yu , M. et al. ( 2018 ). Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting . ACS Nano 12 ( 8 ): 8017 – 8028 . Yu , M. , Wang , Z. , Liu , J. et al. ( 2019 ). A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities . Nano Energy 63 : 103880 . Wu , X. , Zhou , S. , Wang , Z. et al. ( 2019 ). Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater . Advanced Energy Materials 9 ( 34 ): 1901333 . Du , C.-F. , Sun , X. , Yu , H. et al. ( 2019 ). Synergy of Nb doping and surface alloy enhanced on water–alkali electrocatalytic hydrogen generation performance in Ti-based MXene . Advanced Science 6 ( 11 ): 1900116 . Jiang , Y. , Wu , X. , Yan , Y. et al. ( 2019 ). Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions . Small 15 ( 12 ): 1805474 . Zhu , X.-D. , Xie , Y. , and Liu , Y.-T. ( 2018 ). Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions . Journal of Materials Chemistry A 6 ( 43 ): 21255 – 21260 . Jiang , H. , Wang , Z. , Yang , Q. et al. ( 2019 ). Ultrathin Ti 3 C 2 T x (MXene) nanosheet-wrapped NiSe 2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting . Nano-Micro Letters 11 ( 1 ): 31 . Kuang , P. , He , M. , Zhu , B. et al. ( 2019 ). 0D/2D NiS 2 /V-MXene composite for electrocatalytic H 2 evolution . Journal of Catalysis 375 : 8 – 20 . Wang , Z. , Xu , W. , Yu , K. et al. ( 2020 ). 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting . Nanoscale 12 ( 10 ): 6176 – 6187 . Li , Z. , Qi , Z. , Wang , S. et al. ( 2019 ). In situ formed Pt 3 Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions . Nano Letters 19 ( 8 ): 5102 – 5108 . Yuan , Y. , Li , H. , Wang , L. et al. ( 2019 ). Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti 3 C 2 T x (MXene) . ACS Sustainable Chemistry and Engineering 7 ( 4 ): 4266 – 4273 . Zhang , X. , Shao , B. , Sun , Z. et al. ( 2020 ). Platinum nanoparticle-deposited Ti 3 C 2 T x MXene for hydrogen evolution reaction . Industrial and Engineering Chemistry Research 59 ( 5 ): 1822 – 1828 . Hantanasirisakul , K. and Gogotsi , Y. ( 2018 ). Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) . Advanced Materials 30 ( 52 ): 1804779 . Magne , D. , Mauchamp , V. , Célérier , S. et al. ( 2016 ). Site-projected electronic structure of two-dimensional Ti 3 C 2 MXene: the role of the surface functionalization groups . Physical Chemistry Chemical Physics 18 ( 45 ): 30946 – 30953 . Hu , T. , Li , Z. , Hu , M. et al. ( 2017 ). Chemical origin of termination-functionalized MXenes: Ti 3 C 2 T 2 as a case study . The Journal of Physical Chemistry C 121 ( 35 ): 19254 – 19261 . Schultz , T. , Frey , N.C. , Hantanasirisakul , K. et al. ( 2019 ). Surface termination dependent work function and electronic properties of Ti 3 C 2 T x MXene . Chemistry of Materials 31 ( 17 ): 6590 – 6597 . Hart , J.L. , Hantanasirisakul , K. , Lang , A.C. et al. ( 2019 ). Control of MXenes' electronic properties through termination and intercalation . Nature Communications 10 ( 1 ): 522 . Handoko , A.D. , Fredrickson , K.D. , Anasori , B. et al. ( 2018 ). Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity . ACS Applied Energy Materials 1 ( 1 ): 173 – 180 . Wang , Y. , Mao , J. , Meng , X. et al. ( 2019 ). Catalysis with two-dimensional materials confining single atoms: concept, design, and applications . Chemical Reviews 119 ( 3 ): 1806 – 1854 . Li , P. , Zhu , J. , Handoko , A.D. et al. ( 2018 ). High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification . Journal of Materials Chemistry A 6 ( 10 ): 4271 – 4278 . Zhang , J. , Zhao , Y. , Guo , X. et al. ( 2018 ). Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction . Nature Catalysis 1 ( 12 ): 985 – 992 . Ramalingam , V. , Varadhan , P. , Fu , H.-C. et al. ( 2019 ). Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution . Advanced Materials 31 ( 48 ): 1903841 . Kuznetsov , D.A. , Chen , Z. , Kumar , P.V. et al. ( 2019 ). Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction . Journal of the American Chemical Society 141 ( 44 ): 17809 – 17816 . Xiao , W. , Liu , P. , Zhang , J. et al. ( 2017 ). Dual-functional N dopants in edges and basal plane of MoS 2 nanosheets toward efficient and durable hydrogen evolution . Advanced Energy Materials 7 ( 7 ): 1602086 . Ding , B. , Ong , W.-J. , Jiang , J. et al. ( 2020 ). Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo) . Applied Surface Science 500 : 143987 . Yoon , Y. , Tiwari , A.P. , Lee , M. et al. ( 2018 ). Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution . Journal of Materials Chemistry A 6 ( 42 ): 20869 – 20877 . Yoon , Y. , Tiwari , A.P. , Choi , M. et al. ( 2019 ). Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene . Advanced Functional Materials 29 ( 30 ): 1903443 . Yang , C. , Wang , H.-F. , and Xu , Q. ( 2020 ). Recent advances in two-dimensional materials for electrochemical energy storage and conversion . Chemical Research in Chinese Universities 36 ( 1 ): 10 – 23 . Huang , Z.-F. , Song , J. , Dou , S. et al. ( 2019 ). Strategies to break the scaling relation toward enhanced oxygen electrocatalysis . Matter 1 ( 6 ): 1494 – 1518 . Yan , H. , Lin , Y. , Wu , H. et al. ( 2017 ). Bottom-up precise synthesis of stable platinum dimers on graphene . Nature Communications 8 ( 1 ): 1070 . Kang , Z. , Khan , M.A. , Gong , Y. et al. ( 2021 ). Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction . Journal of Materials Chemistry A 9 ( 10 ): 6089 – 6108 . Xiu , L. , Pei , W. , Zhou , S. et al. ( 2020 ). Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater . Advanced Functional Materials 30 ( 47 ): 1910028 . Zhao , K. , Ma , X. , Lin , S. et al. ( 2020 ). Ambient growth of hierarchical FeOOH/MXene as enhanced electrocatalyst for oxygen evolution reaction . ChemistrySelect 5 ( 6 ): 1890 – 1895 . Lu , Y. , Fan , D. , Chen , Z. et al. ( 2020 ). Anchoring Co 3 O 4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution . Science Bulletin 65 ( 6 ): 460 – 466 . Yu , M. , Zhou , S. , Wang , Z. et al. ( 2018 ). Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene . Nano Energy 44 : 181 – 190 . Ma , T.Y. , Cao , J.L. , Jaroniec , M. , and Qiao , S.Z. ( 2016 ). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution . Angewandte Chemie International Edition 55 ( 3 ): 1138 – 1142 . Zhao , L. , Dong , B. , Li , S. et al. ( 2017 ). Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti 3 C 2 T x nanosheets for electrocatalytic oxygen evolution . ACS Nano 11 ( 6 ): 5800 – 5807 . Zou , H. , He , B. , Kuang , P. et al. ( 2018 ). Metal–organic framework-derived nickel–cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution . ACS Applied Materials and Interfaces 10 ( 26 ): 22311 – 22319 . Wen , Y. , Wei , Z. , Ma , C. et al. ( 2019 ). MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution . Nanomaterials 9 ( 5 ): 775 . Selvam , N.C.S. , Lee , J. , Choi , G.H. et al. ( 2019 ). MXene supported CoxAy (A = OH, P, Se) electrocatalysts for overall water splitting: unveiling the role of anions in intrinsic activity and stability . Journal of Materials Chemistry A 7 ( 48 ): 27383 – 27393 . Tang , Y. , Yang , C. , Yang , Y. et al. ( 2019 ). Three dimensional hierarchical network structure of S-NiFe 2 O 4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution . Electrochimica Acta 296 : 762 – 770 . Wen , Y. , Wei , Z. , Liu , J. et al. ( 2021 ). Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution . Journal of Energy Chemistry 52 : 412 – 420 . Liu , J. , Mi , L. , Xing , Y. et al. ( 2020 ). Construction of Ti 3 C 2 supported hybrid Co 3 O 4 /NCNTs composite as an efficient oxygen reduction electrocatalyst . Renewable Energy 160 : 1168 – 1173 . Wen , Y. , Ma , C. , Wei , Z. et al. ( 2019 ). FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction . RSC Advances 9 ( 24 ): 13424 – 13430 . Zhang , C. , Ma , B. , Zhou , Y. , and Wang , C. ( 2020 ). Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions . Journal of Electroanalytical Chemistry 865 : 114142 . Chen , J. , Yuan , X. , Lyu , F. et al. ( 2019 ). Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction . Journal of Materials Chemistry A 7 ( 3 ): 1281 – 1286 . Zhang , Y. , Jiang , H. , Lin , Y. et al. ( 2018 ). In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti 3 C 2 T x (MXene) matrix for oxygen reduction and evolution . Advanced Materials Interfaces 5 ( 16 ): 1800392 . Lei , Y. , Tan , N. , Zhu , Y. et al. ( 2020 ). Synthesis of porous N-rich carbon/MXene from MXene@polypyrrole hybrid nanosheets as oxygen reduction reaction electrocatalysts . Journal of The Electrochemical Society 167 ( 11 ): 116503 . Li , C. , Mou , S. , Zhu , X. et al. ( 2019 ). Dendritic Cu: a high-efficiency electrocatalyst for N 2 fixation to NH 3 under ambient conditions . Chemical Communications 55 ( 96 ): 14474 – 14477 . Capdevila-Cortada , M. ( 2019 ). Electrifying the Haber–Bosch . Nature Catalysis 2 : 1055 – 1055 . Singh , A.R. , Rohr , B.A. , Schwalbe , J.A. et al. ( 2017 ). Electrochemical ammonia synthesis—the selectivity challenge . ACS Catalysis 7 ( 1 ): 706 – 709 . Gao , Y. , Cao , Y. , Zhuo , H. et al. ( 2020 ). Mo 2 TiC 2 MXene: a promising catalyst for electrocatalytic ammonia synthesis . Catalysis Today 339 : 120 – 126 . Zhao , J. , Zhang , L. , Xie , X.-Y. et al. ( 2018 ). Ti 3 C 2 Tx (T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N 2 to NH 3 . Journal of Materials Chemistry A 6 ( 47 ): 24031 – 24035 . Azofra , L.M. , Li , N. , MacFarlane , D.R. , and Sun , C. ( 2016 ). Promising prospects for 2D d 2 –d 4 M 3 C 2 transition metal carbides (MXenes) in N 2 capture and conversion into ammonia . Energy & Environmental Science 9 ( 8 ): 2545 – 2549 . Zhang , J. , Yang , L. , Wang , H. et al. ( 2019 ). In situ hydrothermal growth of TiO 2 nanoparticles on a conductive Ti 3 C 2 T x MXene nanosheet: a synergistically active Ti-based nanohybrid electrocatalyst for enhanced N 2 reduction to NH 3 at ambient conditions . Inorganic Chemistry 58 ( 9 ): 5414 – 5418 . Kong , W. , Gong , F. , Zhou , Q. et al. ( 2019 ). An MnO 2 –Ti 3 C 2 T x MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N 2 fixation to NH 3 under ambient conditions . Journal of Materials Chemistry A 7 ( 32 ): 18823 – 18827 . Fang , Y. , Liu , Z. , Han , J. et al. ( 2019 ). High-performance electrocatalytic conversion of N 2 to NH 3 using oxygen-vacancy-rich TiO 2 in situ grown on Ti 3 C 2 T x MXene . Advanced Energy Materials 9 ( 16 ): 1803406 . Zheng , S. , Li , S. , Mei , Z. et al. ( 2019 ). Electrochemical nitrogen reduction reaction performance of single-boron catalysts tuned by MXene substrates . The Journal of Physical Chemistry Letters 10 ( 22 ): 6984 – 6989 . Luo , Y. , Chen , G.-F. , Ding , L. et al. ( 2019 ). Efficient electrocatalytic N 2 fixation with MXene under ambient conditions . Joule 3 ( 1 ): 279 – 289 . Li , Z. and Wu , Y. ( 2019 ). 2D early transition metal carbides (MXenes) for catalysis . Small 15 ( 29 ): 1804736 . Daiyan , R. , Saputera , W.H. , Masood , H. et al. ( 2020 ). A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO 2 to value-added chemicals and fuel . Advanced Energy Materials 10 ( 11 ): 1902106 . Chen , H. , Handoko , A.D. , Xiao , J. et al. ( 2019 ). Catalytic effect on CO 2 electroreduction by hydroxyl-terminated two-dimensional MXenes . ACS Applied Materials and Interfaces 11 ( 40 ): 36571 – 36579 . Li , N. , Chen , X. , Ong , W.-J. et al. ( 2017 ). Understanding of electrochemical mechanisms for CO 2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes) . ACS Nano 11 ( 11 ): 10825 – 10833 . Handoko , A.D. , Khoo , K.H. , Tan , T.L. et al. ( 2018 ). Establishing new scaling relations on two-dimensional MXenes for CO 2 electroreduction . Journal of Materials Chemistry A 6 ( 44 ): 21885 – 21890 . Yang , X. , Jia , Q. , Duan , F. et al. ( 2019 ). Multiwall carbon nanotubes loaded with MoS 2 quantum dots and MXene quantum dots: non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution . Applied Surface Science 464 : 78 – 87 . Wang , Y. , Wang , J. , Han , G. et al. ( 2019 ). Pt decorated Ti 3 C 2 MXene for enhanced methanol oxidation reaction . Ceramics International 45 ( 2, Part A ): 2411 – 2417 . Lang , Z. , Zhuang , Z. , Li , S. et al. ( 2020 ). MXene surface terminations enable strong metal–support interactions for efficient methanol oxidation on palladium . ACS Applied Materials and Interfaces 12 ( 2 ): 2400 – 2406 . Heterogeneous Nanocatalysis for Energy and Environmental Sustainability ReferencesRelatedInformation