渗透
膜
渗透
石墨烯
材料科学
氧化物
化学工程
氢
烧结
努森扩散
多孔性
复合材料
化学
纳米技术
有机化学
冶金
生物化学
工程类
作者
Montree Hankoy,Chaiwat Phrompet,Chesta Ruttanapun,Prangtip Kaewpengkrow,Supawan Vichaphund,Duangduen Atong,Mettaya Kitiwan,Phacharaphon Tunthawiroon
标识
DOI:10.1016/j.ijhydene.2022.10.027
摘要
Graphene oxide (GO) membranes have attracted considerable interest for hydrogen (H2) purification applications. However, the addition of GO into matrix materials to enhance the efficiency of H2 permeation remains a challenge. In this study, the fabrication of alumina/graphene oxide (AGO) composites containing varying contents of GO (0.5–3.0 wt.%) was investigated. The AGO composites were formed into pellets and sintered for 2 h at 1500 °C. Accordingly, the presence of GO in the membranes following sintering was confirmed by Raman spectroscopy. Additionally, the porosity of the AGO composites increased from 3.7% to 26.9% as the GO concentration increased from 0.5 wt.% to 3.0 wt.%. Furthermore, the average pore diameter of the AGO composites was in the range of 87–228 nm, and the pore size distribution was unimodal. The performance of the AGO membranes was investigated for the permeance of single gases H2 and N2 at 30–500 °C to evaluate their potential for H2 separation applications. The AGO membranes with a GO addition of 2.5 and 3.0 wt.% exhibited a high hydrogen permeance of 232–410 × 10−6 mol m−2 s−1 Pa−1, which was approximately 10 times greater than that of pristine Al2O3 membrane. Additionally, the ideal H2/N2 selectivity values ranged from 4.02 to 4.20. Furthermore, gas permeation through the AGO membrane was observed to follow the Knudsen diffusion mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI