Single-atomic Co-N4-O site boosting exciton dissociation and hole extraction for improved photocatalytic hydrogen evolution in crystalline carbon nitride

离解(化学) 材料科学 光催化 激子 纳米棒 氢原子 量子产额 催化作用 制氢 氮化碳 光化学 纳米技术 物理化学 化学 荧光 光学 烷基 有机化学 物理 量子力学
作者
Yingjie Wang,Daijun Xie,Guo Wang,Yishi Wu,Run Shi,Chao Zhou,Xiangfu Meng,Tierui Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:104: 107938-107938 被引量:43
标识
DOI:10.1016/j.nanoen.2022.107938
摘要

Single atom co-catalyst loading has been demonstrated to be an effective strategy for achieving efficient photocatalytic water splitting. Unfortunately, the origins of the high activity of the single atom sites remain unrevealed owing to the lack of deep insight on their coordination environment. Herein, single-atom Co was loaded on crystalline g-C3N4 (CCN) nanorod in the form of five-coordination (Co-N4-O) at the heptazine cavities. Both experimental and theoretical evidences revealed that single-atomic Co-N4-O sites in CCN-Co played a key role in exciton dissociation and photogenerated charge carrier separation as well as subsequent hole extraction and transfer. Under visible light irradiation, the photogenerated holes in CCN directionally transferred to Co-N4-O sites and were rapidly extracted by hole sacrificial agent. As a result, the obtained CCN-Co sample with 0.32 wt. % Co and 1.0 wt. % Pt exhibited significantly improved photocatalytic hydrogen production rate of 32.1 mmol g−1 h−1, nearly 4 times and 38 times higher than that of CCN and bulk g-C3N4, respectively. The apparent quantum yield as high as 49.5 % was achieved at 420 nm. This work opens new insights for understanding the effect of single-atom active sites in promoting photocatalytic hydrogen production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到 ,获得积分10
刚刚
刚刚
刚刚
lyq完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
研友_8o5V2n发布了新的文献求助50
3秒前
3秒前
SIHUONIANHUA完成签到,获得积分20
3秒前
田様应助文艺秋天采纳,获得10
3秒前
3秒前
Lucas应助经法采纳,获得10
3秒前
syx完成签到,获得积分10
3秒前
大个应助英俊芷采纳,获得10
4秒前
yuan发布了新的文献求助10
4秒前
三更发布了新的文献求助10
4秒前
4秒前
4秒前
tinty关注了科研通微信公众号
4秒前
科研大拿发布了新的文献求助10
4秒前
5秒前
tomatoli发布了新的文献求助10
5秒前
小黄发布了新的文献求助10
5秒前
Daryl发布了新的文献求助10
5秒前
兰金完成签到,获得积分10
5秒前
缓慢尔风完成签到 ,获得积分10
5秒前
5秒前
午餐肉完成签到,获得积分10
5秒前
233asd发布了新的文献求助10
6秒前
6秒前
蜜雪冰城发布了新的文献求助10
6秒前
6秒前
张晨伟完成签到,获得积分10
6秒前
聪明凌雪发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
wxm应助英俊芷采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668