High-efficiency anti-interference OAM-FSO communication system based on Phase compression and improved CNN

光学 多路复用 稳健性(进化) 计算机科学 角动量 解调 物理 干扰(通信) 涡流 传输(电信) 频道(广播) 电信 量子力学 热力学 基因 生物化学 化学
作者
Zhixiang Li,Xu Li,Haijie Jia,Zhenzhen Pan,Chaofan Gong,Hongping Zhou,Zhongyi Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:537: 129120-129120 被引量:6
标识
DOI:10.1016/j.optcom.2022.129120
摘要

Atmospheric turbulence (AT) will cause the crosstalk between OAM (orbital angular momentum) beams, which makes it difficult to identify the OAM modes at the demodulation part. In order to reduce AT's interference, we propose to combine phase compression (PC) with an improved convolutional neural network (CNN) to achieve high-precision recognition of OAM modes. We have investigated the performances (OAM recognition accuracy) of our system with changes of AT's intensities, transmission distances, and PC ratios. The results demonstrate that compared with traditional recognition systems, our model still has higher accuracy in the case of strong AT and long-distance transmission, which can be attributed as the additional characteristics of the PC OAM beams. At the same time, we also investigate the performances of the multiplexed hybrid vortex beam under different AT intensities, and discuss the recognition of the multiplexed hybrid vortex beam with the same OAM mode but different PC ratios, where the results show that the multiplexed hybrid vortex beams with the same OAM mode but different PC ratios can also be recognized at the receiving part. In addition, we also used unknown turbulence to test our trained model, and our model demonstrates good generalization ability, which has superior robustness for the unknown AT environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
赶紧大聪明完成签到,获得积分10
4秒前
英姑应助尛瞐慶成采纳,获得10
6秒前
草莓钙片完成签到,获得积分10
7秒前
研友_38KR2Z发布了新的文献求助10
8秒前
甜美代秋完成签到,获得积分10
8秒前
9秒前
cctv18应助繁星采纳,获得10
9秒前
11秒前
背后山雁完成签到 ,获得积分10
12秒前
13秒前
sinyashou发布了新的文献求助10
13秒前
苏耘琛发布了新的文献求助30
14秒前
海海发布了新的文献求助60
14秒前
14秒前
开心的向雁完成签到,获得积分10
14秒前
14秒前
mdmdd发布了新的文献求助10
15秒前
认真厉完成签到,获得积分20
17秒前
奶油泡fu完成签到 ,获得积分10
17秒前
17秒前
英俊的铭应助桃井尤川采纳,获得10
18秒前
19秒前
21秒前
22秒前
22秒前
一一完成签到,获得积分20
23秒前
23秒前
和和完成签到,获得积分10
23秒前
chen完成签到,获得积分10
24秒前
安静笑晴发布了新的文献求助10
25秒前
25秒前
知行者完成签到,获得积分10
25秒前
27秒前
Wang发布了新的文献求助10
27秒前
27秒前
zzz完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232