先天免疫系统
免疫系统
炎症体
获得性免疫系统
PI3K/AKT/mTOR通路
免疫学
炎症
生物
医学
细胞生物学
信号转导
标识
DOI:10.1016/j.molimm.2022.11.014
摘要
The innate immune system is the first line of defense for the host against any microbial attack. It can quickly identify microorganisms and produce an immune response, removing pathogenic microorganisms. However, a strong immune response might lead to excessive inflammation and even autoimmune diseases. NLRC3 is an important regulator of innate immune system homeostasis. It is a member of the anti-inflammatory NLR family and can inhibit excessive immune response in the body. In this review, we primarily focused on the current research progress on NLRC3 and its potential application. It can decrease the production of pro-inflammatory cytokines by inhibiting the NF-κB, MAK-ERK, PI3K-mTOR, IL-6/JAK2/STAT3, and cGAS-STING pathways. It also inhibits inflammatory responses by interfering with the assembly and activity of the NLRP3 inflammasome complexes. Additionally, NLRC3 can also reduce the functions of some antigen-presenting cells and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. NLRC3 is closely related to the development of tumors, infectious diseases, autoimmune diseases, and AD. These diseases might be treated effectively by regulating the expression of NLRC3.
科研通智能强力驱动
Strongly Powered by AbleSci AI