A novel generation adversarial network framework with characteristics aggregation and diffusion for brain disease classification and feature selection

可解释性 计算机科学 人工智能 特征选择 机器学习 特征(语言学) 深度学习 神经影像学 影像遗传学 模式识别(心理学) 数据挖掘 神经科学 生物 语言学 哲学
作者
Xia-an Bi,Yuhua Mao,Sheng Luo,Hao Wu,Lixia Zhang,Xun Luo,Luyun Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:1
标识
DOI:10.1093/bib/bbac454
摘要

Imaging genetics provides unique insights into the pathological studies of complex brain diseases by integrating the characteristics of multi-level medical data. However, most current imaging genetics research performs incomplete data fusion. Also, there is a lack of effective deep learning methods to analyze neuroimaging and genetic data jointly. Therefore, this paper first constructs the brain region-gene networks to intuitively represent the association pattern of pathogenetic factors. Second, a novel feature information aggregation model is constructed to accurately describe the information aggregation process among brain region nodes and gene nodes. Finally, a deep learning method called feature information aggregation and diffusion generative adversarial network (FIAD-GAN) is proposed to efficiently classify samples and select features. We focus on improving the generator with the proposed convolution and deconvolution operations, with which the interpretability of the deep learning framework has been dramatically improved. The experimental results indicate that FIAD-GAN can not only achieve superior results in various disease classification tasks but also extract brain regions and genes closely related to AD. This work provides a novel method for intelligent clinical decisions. The relevant biomedical discoveries provide a reliable reference and technical basis for the clinical diagnosis, treatment and pathological analysis of disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Inevitable发布了新的文献求助10
1秒前
ppp完成签到,获得积分10
4秒前
nihao发布了新的文献求助10
5秒前
zhjp发布了新的文献求助10
5秒前
Very发布了新的文献求助10
6秒前
我是老大应助Pauline采纳,获得10
7秒前
Hello应助Mr贱包子采纳,获得10
8秒前
10秒前
jin发布了新的文献求助10
11秒前
11秒前
11秒前
www发布了新的文献求助10
12秒前
13秒前
宋博发布了新的文献求助10
13秒前
tamer完成签到,获得积分10
14秒前
缥缈的洪纲完成签到,获得积分10
15秒前
情怀应助张龙雨采纳,获得10
15秒前
15秒前
18秒前
19秒前
19秒前
ggg发布了新的文献求助10
21秒前
科研通AI2S应助ws采纳,获得30
22秒前
乐小泽发布了新的文献求助10
22秒前
唐唐发布了新的文献求助10
24秒前
28秒前
SciGPT应助葉落葉飄采纳,获得10
28秒前
无限大树发布了新的文献求助10
29秒前
酷波er应助ggg采纳,获得10
29秒前
Tony完成签到,获得积分10
30秒前
31秒前
32秒前
32秒前
柠檬汽水发布了新的文献求助10
34秒前
淡淡的水香应助清水采纳,获得30
36秒前
善学以致用应助zhaokkkk采纳,获得10
36秒前
36秒前
大胆蛋挞发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129