A novel generation adversarial network framework with characteristics aggregation and diffusion for brain disease classification and feature selection

可解释性 计算机科学 人工智能 特征选择 机器学习 特征(语言学) 深度学习 神经影像学 影像遗传学 模式识别(心理学) 数据挖掘 神经科学 生物 语言学 哲学
作者
Xia-an Bi,Yuhua Mao,Sheng Luo,Hao Wu,Lixia Zhang,Xun Luo,Luyun Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:1
标识
DOI:10.1093/bib/bbac454
摘要

Imaging genetics provides unique insights into the pathological studies of complex brain diseases by integrating the characteristics of multi-level medical data. However, most current imaging genetics research performs incomplete data fusion. Also, there is a lack of effective deep learning methods to analyze neuroimaging and genetic data jointly. Therefore, this paper first constructs the brain region-gene networks to intuitively represent the association pattern of pathogenetic factors. Second, a novel feature information aggregation model is constructed to accurately describe the information aggregation process among brain region nodes and gene nodes. Finally, a deep learning method called feature information aggregation and diffusion generative adversarial network (FIAD-GAN) is proposed to efficiently classify samples and select features. We focus on improving the generator with the proposed convolution and deconvolution operations, with which the interpretability of the deep learning framework has been dramatically improved. The experimental results indicate that FIAD-GAN can not only achieve superior results in various disease classification tasks but also extract brain regions and genes closely related to AD. This work provides a novel method for intelligent clinical decisions. The relevant biomedical discoveries provide a reliable reference and technical basis for the clinical diagnosis, treatment and pathological analysis of disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tananna完成签到,获得积分10
刚刚
刚刚
斯文败类应助缥缈傲南采纳,获得10
1秒前
单薄的夜南应助等待冰露采纳,获得10
1秒前
uu完成签到,获得积分10
2秒前
yiya完成签到,获得积分10
2秒前
Marvin42完成签到,获得积分10
3秒前
bkagyin应助小柒采纳,获得10
4秒前
4秒前
waouou完成签到,获得积分10
4秒前
清风发布了新的文献求助10
4秒前
5秒前
CodeCraft应助火星上紫山采纳,获得10
5秒前
6秒前
applegood完成签到,获得积分10
6秒前
7秒前
烟花应助HHHSQ采纳,获得10
10秒前
俊杰发布了新的文献求助10
10秒前
10秒前
10秒前
666666666666666完成签到 ,获得积分10
10秒前
852应助好柿花生采纳,获得10
11秒前
罗氏集团发布了新的文献求助10
11秒前
善学以致用应助456采纳,获得10
11秒前
雨中石完成签到,获得积分10
11秒前
王慧颖发布了新的文献求助10
12秒前
12秒前
12秒前
xian完成签到,获得积分10
13秒前
14秒前
尽如给尽如的求助进行了留言
14秒前
15秒前
ange完成签到,获得积分10
15秒前
雨中石发布了新的文献求助10
15秒前
burrrrr完成签到,获得积分10
15秒前
16秒前
liu完成签到,获得积分10
18秒前
夏日香气发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014