Highly Stretchable Sensitive Multiscale Hydrogel Inspired by Biological Muscles for Wearing Sensors

材料科学 微尺度化学 纳米技术 生物相容性 自愈水凝胶 可穿戴计算机 可穿戴技术 压力传感器 韧性 复合材料 计算机科学 机械工程 高分子化学 嵌入式系统 数学教育 工程类 冶金 数学
作者
Wenhui Zhao,Yao Li,Jing Tian,Qu Cui,Chenyang Tang,Fawen Yin,Longquan Xu,Sheng Cheng,Fei Xu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (43): 58313-58325 被引量:1
标识
DOI:10.1021/acsami.4c12118
摘要

Hydrogels have attracted substantial research interest for application in wearable electronics due to their stretchability, elasticity, and compliance. However, most hydrogels could not satisfy the application requirements for high-performance wearable sensors due to their poor sensitivity, low mechanical properties, and sensing detection range until this day. Inspired by the fascia in biological muscles, we propose a strategy to form entangled "clusters" through the dense entanglement between highly cross-linked elastic hydrogel microspheres and polymer segments, and prepared a multiscale hydrogel with high sensitivity and mechanical toughness. This strategy embedded highly swollen hydrogel microspheres (with different pore sizes) to act as the microregions of dense entanglement in the soft matrix to adjust the microstructure of multiscale gel. When pressure was applied, this structure could provide a fast response due to the stack layer formed by microspheres and soft matrix produced effective stress distribution, resulting in the outstanding sensitivity of the multiscale hydrogel (S = 1.1 kPa–1) in the pressure range of 0–50 kPa. The distinct microspheres functioning as microscale joint areas significantly augment energy dissipation, culminating in exceptional mechanical stability, ultrastretchability (≈1050%), and high strength of the multiscale hydrogel. The most notable progress was that the synthesized multiscale hydrogel not only combined the above advantages but also simultaneously solved multiple dilemmas of tedious synthesis steps, high cost, and poor durability. Besides, the multiscale hydrogel also had excellent antibacterial properties and biocompatibility, which enabled them to have large-scale application potential in wearable and implantable electronic devices. Our research could provide a universal approach to the creation of robust, flexible, wearable, and sensitive sensors, significantly increasing the uses of stress sensors in wearable technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄二豆完成签到,获得积分20
2秒前
信封里的太阳完成签到 ,获得积分10
3秒前
wo93872ni完成签到,获得积分10
3秒前
方方完成签到 ,获得积分10
5秒前
小石头完成签到 ,获得积分10
6秒前
sss完成签到,获得积分10
12秒前
12秒前
跳跃的语柔完成签到 ,获得积分10
13秒前
暖楠完成签到 ,获得积分10
19秒前
任性的冥应助Lny采纳,获得50
19秒前
清爽达完成签到 ,获得积分10
24秒前
热心的冬菱完成签到 ,获得积分10
27秒前
酱豆豆完成签到 ,获得积分10
28秒前
28秒前
SASI完成签到 ,获得积分10
30秒前
福娃完成签到,获得积分10
31秒前
roy_chiang完成签到,获得积分10
32秒前
天行健完成签到,获得积分10
32秒前
詹姆斯哈登完成签到,获得积分10
32秒前
无限晓蓝完成签到 ,获得积分10
32秒前
激动的xx完成签到 ,获得积分10
33秒前
yangching完成签到,获得积分10
34秒前
鲲鹏完成签到 ,获得积分10
35秒前
婆婆丁完成签到,获得积分10
37秒前
RLLLLLLL完成签到 ,获得积分10
38秒前
害羞的裘完成签到 ,获得积分10
40秒前
哥哥完成签到,获得积分10
40秒前
优雅莞完成签到,获得积分10
42秒前
anne完成签到 ,获得积分10
45秒前
46秒前
非我完成签到 ,获得积分10
47秒前
Aurora1011完成签到 ,获得积分10
49秒前
panda完成签到,获得积分0
49秒前
1111111完成签到,获得积分20
50秒前
CGFHEMAN完成签到 ,获得积分10
51秒前
54秒前
dophin完成签到,获得积分10
56秒前
2021完成签到 ,获得积分10
56秒前
苗苗发布了新的文献求助10
59秒前
飞龙在天完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570455
求助须知:如何正确求助?哪些是违规求助? 3992057
关于积分的说明 12356703
捐赠科研通 3664746
什么是DOI,文献DOI怎么找? 2019704
邀请新用户注册赠送积分活动 1054150
科研通“疑难数据库(出版商)”最低求助积分说明 941725