Multi-modality Hierarchical Attention Networks for Defect Identification in Pipeline MFL Detection

模态(人机交互) 管道(软件) 鉴定(生物学) 冗余(工程) 计算机科学 特征(语言学) 数据冗余 人工智能 模式识别(心理学) 数据挖掘 植物 生物 程序设计语言 语言学 哲学 操作系统
作者
Gang Wang,Ying Su,Ming-Feng Lu,Rongsheng Chen,Xusheng Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad66f8
摘要

Abstract Magnetic flux leakage (MFL) testing is widely used for acquiring MFL signals to detect pipeline defects, and data-driven approaches have been effectively investigated for MFL defect identification. However, with the increasing complexity of pipeline defects, current methods are constrained by the incomplete information from single modal data, which fails to meet detection requirements. Moreover, the incorporation of multimodal MFL data results in feature redundancy. Therefore, the Multi-Modality Hierarchical Attention Networks (MMHAN) are proposed for defect identification. Firstly, stacked residual blocks with Cross-Level Attention Module (CLAM) and multiscale 1D-CNNs with Multiscale Attention Module (MAM) are utilized to extract multiscale defect features. Secondly, the Multi-Modality Feature Enhancement Attention Module (MMFEAM) is developed to enhance critical defect features by leveraging correlations among multimodal features. Lastly, the Multi-Modality Feature Fusion Attention Module (MMFFAM) is designed to dynamically integrate multimodal features deeply, utilizing the consistency and complementarity of multimodal information. Extensive experiments were conducted on multimodal pipeline datasets to assess the proposed MMHAN. The experimental results demonstrate that MMHAN achieves a higher identification accuracy, validating its exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
spyspy完成签到,获得积分10
1秒前
林佳一完成签到,获得积分10
3秒前
城南烤地瓜完成签到 ,获得积分10
3秒前
4秒前
等等完成签到 ,获得积分10
6秒前
wanci应助mzc采纳,获得10
6秒前
一条咸鱼发布了新的文献求助10
6秒前
8秒前
某只兔子完成签到,获得积分10
9秒前
大模型应助一条咸鱼采纳,获得10
10秒前
行路人发布了新的文献求助20
10秒前
阿航完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
12秒前
科研通AI5应助科研混子采纳,获得10
13秒前
英俊的铭应助欧阳正义采纳,获得10
14秒前
14秒前
Chris发布了新的文献求助10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
柯一一应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
mmyhn应助科研通管家采纳,获得20
16秒前
iNk应助科研通管家采纳,获得20
16秒前
Liufgui应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
Liufgui应助科研通管家采纳,获得10
16秒前
ccc发布了新的文献求助10
16秒前
酷波er应助积极的夜香采纳,获得80
16秒前
Liufgui应助科研通管家采纳,获得10
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
霸气的猎豹完成签到,获得积分10
18秒前
牛牛完成签到,获得积分10
18秒前
小奕应助甝虪采纳,获得20
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498