Singlet fission photovoltaic cells as dual-wavelength laser power converters compatible with highly efficient solar cells

光伏系统 转换器 裂变 光电子学 单重态裂变 材料科学 激光器 光伏 对偶(语法数字) 波长 能量转换效率 功率(物理) 物理 光学 原子物理学 单重态 核物理学 电气工程 激发态 中子 工程类 文学类 艺术 量子力学
作者
Yasuhiko Takeda
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:136 (4)
标识
DOI:10.1063/5.0217612
摘要

I applied photovoltaic cells equipped with singlet fission (SF) of molecular systems to dual-wavelength laser power converters (DW-LPCs) that efficiently convert two laser lights of different wavelengths to electricity. When the SF-DW-LPC is illuminated by eye-safe laser light of 1470 nm wavelength emitted from a laser diode, a single photon is converted to a single carrier. On the other hand, a single high-energy photon emitted from a high-power and low-cost laser diode of 808 nm is converted to two carriers by SF owing to its endothermic feature, even though the photon energy is slightly lower than twice the fundamental energy gap. Furthermore, the SF-DW-LPC operates as a highly efficient solar cell. These functions are required for optical wireless power transmission to moving objects including electric vehicles and flying drones. I modeled the photovoltaic process with SF and evaluated the limiting conversion efficiencies by detailed-balance calculations. Conversion efficiencies of the SF-DW-LPC for these two laser lights are competitive with those of the conventional single-junction LPCs dedicated to these wavelengths, respectively. The efficiency under solar light is close to that of the optimally designed SF solar cell. Furthermore, the SF-DW-LPC outperforms other types of DW-LPCs designed on the basis of intermediate band, triplet–triplet annihilation, and multiple exciton generation solar cells. Endothermic SF and carrier/energy extraction into the neighboring acceptors have already been demonstrated. However, molecular systems that apply to 1470 nm have not yet been realized, which is the top-priority issue to be solved to realize highly efficient SF-DW-LPCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐青柏发布了新的文献求助10
1秒前
思源应助yyyyyy采纳,获得10
1秒前
1秒前
1秒前
烟花应助wyh798采纳,获得10
1秒前
果果完成签到,获得积分10
2秒前
3秒前
完美的水杯完成签到 ,获得积分10
3秒前
4秒前
开放雪曼发布了新的文献求助10
4秒前
yuan给yuan的求助进行了留言
4秒前
yori完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
隐形曼青应助沿岸有贝壳采纳,获得10
6秒前
6秒前
KouZL完成签到,获得积分10
6秒前
6秒前
lyx完成签到 ,获得积分10
6秒前
小脚丫发布了新的文献求助10
6秒前
liuliu应助元谷雪采纳,获得10
7秒前
7秒前
无花果应助yueang采纳,获得10
7秒前
果果发布了新的文献求助10
8秒前
道心发布了新的文献求助10
8秒前
mayberichard发布了新的文献求助10
8秒前
yk应助张豪采纳,获得10
9秒前
9秒前
9秒前
10秒前
小小咸鱼发布了新的文献求助20
10秒前
10秒前
JOE发布了新的文献求助10
10秒前
10秒前
虚幻代芙发布了新的文献求助10
10秒前
11秒前
研友_xLOMQZ完成签到,获得积分10
11秒前
邵洋完成签到,获得积分10
11秒前
lily完成签到,获得积分10
12秒前
kinlin发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437