已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of Arrhythmias Using Heart Rate Signals from Smartwatches

智能手表 医学 计算机科学 心脏病学 可穿戴计算机 嵌入式系统
作者
Herwin Alayn Huillcen Baca,Águeda Muñoz del Carpio Toia,José Sulla-Torres,Roderick Cusirramos Montesinos,Lucia Alejandra Contreras Salas,Catalina Correa
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (16): 7233-7233
标识
DOI:10.3390/app14167233
摘要

According to the World Health Organization (WHO), cardiovascular illnesses, including arrhythmia, are the primary cause of mortality globally, responsible for over 31% of all fatalities each year. To reduce mortality, early and precise diagnosis is essential. Although the analysis of electrocardiograms (ECGs) is the primary means of detecting arrhythmias, it depends significantly on the expertise and subjectivity of the health professional reading and interpreting the ECG, and errors may occur in detection. Artificial intelligence provides tools, techniques, and models that can support health professionals in detecting arrhythmias. However, these tools are based only on ECG data, of which the process of obtaining is an invasive, high-cost method requiring specialized equipment and personnel. Smartwatches feature sensors that can record real-time signals indicating the heart’s behavior, such as ECG signals and heart rate. Using this approach, we propose a machine learning- and deep learning-based approach for detecting arrhythmias using heart rate data obtained with smartwatches. Heart rate data were collected from 252 patients with and without arrhythmias who attended a clinic in Arequipa, Peru. Heart rates were also collected from 25 patients who wore smartwatches. Ten machine learning algorithms were implemented to generate the most effective arrhythmia recognition model, with the decision tree algorithm being the most suitable. The results were analyzed using accuracy, sensitivity, and specificity metrics. Using Holter data yielded values of 93.2%, 91.89%, and 94.59%, respectively. Using smartwatch data yielded values of 70.83%, 91.67%, and 50%, respectively. These results indicate that our model can effectively recognize arrhythmias from heart rate data. The high sensitivity score suggests that our model adequately recognizes true positives; that is, patients with arrhythmia. Likewise, its specificity suggests an adequate recognition of false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_VZG7GZ应助搞怪从菡采纳,获得10
3秒前
郭娅楠完成签到 ,获得积分10
4秒前
4秒前
哇哇哇哇发布了新的文献求助10
4秒前
科研通AI2S应助galichangfen采纳,获得10
4秒前
完美的海秋应助文件撤销了驳回
5秒前
科研通AI2S应助kaizi采纳,获得10
5秒前
科研通AI2S应助kaizi采纳,获得10
5秒前
6秒前
Hello应助greatsnow采纳,获得10
7秒前
8秒前
科研通AI2S应助咚咚采纳,获得10
9秒前
汉堡包应助聪慧的致远采纳,获得10
11秒前
13秒前
不朽阳神完成签到,获得积分10
13秒前
ChenHan完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
刘子子应助YU DIAN采纳,获得10
15秒前
shanjianjie应助YU DIAN采纳,获得10
15秒前
无所谓完成签到 ,获得积分10
17秒前
17秒前
搞怪从菡发布了新的文献求助10
19秒前
Jonsnow发布了新的文献求助10
20秒前
20秒前
20秒前
打工仔发布了新的文献求助10
21秒前
十三州府完成签到,获得积分10
21秒前
大个应助比巴卜采纳,获得10
22秒前
23秒前
星辰大海应助wssf采纳,获得10
24秒前
28秒前
坚定的黑猫完成签到 ,获得积分10
29秒前
幽悠梦儿完成签到 ,获得积分10
30秒前
英俊的铭应助galichangfen采纳,获得10
32秒前
Kyros完成签到 ,获得积分10
33秒前
甜美念之完成签到,获得积分10
33秒前
啦啦啦完成签到,获得积分10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265338
求助须知:如何正确求助?哪些是违规求助? 2905244
关于积分的说明 8333227
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399954
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471