FedSeProto: Learning Semantic Prototype in Federated Learning

计算机科学 万维网
作者
Yanyi Lai,Lele Fu,Tianchi Liao,Chuan Chen,Zibin Zheng
出处
期刊:Frontiers in artificial intelligence and applications
标识
DOI:10.3233/faia240731
摘要

Federated learning enables multiple clients to collaboratively train a global model without revealing their local data. However, conventional federated learning often overlooks the fact that data stored on different clients may originate from diverse domains, and the resulting domain shift problem can significantly impair the performance of the global model. In this paper, we introduce Federated Semantic Prototype Learning (FedSeProto), a semantic prototype-based approach designed to address the domain shift issue in federated learning. The proposed method comprises two components: feature decoupling and feature alignment. Feature decoupling aims to learn semantic prototypes that can represent semantic information associated with specific categories, while feature alignment utilizes these semantic prototypes to facilitate learning of cross-client consistent features. Two key techniques are employed to achieve feature decoupling. On one hand, feature separation is achieved through the minimization of mutual information between semantic and domain features. On the other hand, the knowledge distillation is leveraged to ensure that both semantic and domain features carry the correct information. For feature alignment, intra-class semantic features are used to generate the local prototypes, which are further aggregated to the global prototypes. These global prototypes serve as guides during the local training process. Specifically, the local intra-class semantic features are driven to close to the corresponding global prototypes, thereby encouraging all clients to learn the globally consistent semantic features. Comprehensive experiments conducted on four challenging multi-domain datasets demonstrate the effectiveness of the proposed method compared with existing federated learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大个应助Raxiny采纳,获得10
刚刚
小胡完成签到,获得积分10
刚刚
LHX关注了科研通微信公众号
1秒前
深情的若翠完成签到,获得积分10
1秒前
1秒前
怕孤单的山河完成签到,获得积分10
1秒前
2秒前
2秒前
李嘉图发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
ksoeeis发布了新的文献求助10
4秒前
4秒前
小二郎应助开心的冰淇淋采纳,获得10
6秒前
Six_seven完成签到,获得积分10
7秒前
7秒前
长孙兰溪发布了新的文献求助10
7秒前
8秒前
渊思完成签到,获得积分10
8秒前
子车茗应助QQ不需要昵称采纳,获得10
8秒前
8秒前
科研通AI2S应助ZPH采纳,获得10
9秒前
Ming完成签到,获得积分10
9秒前
李嘉图完成签到,获得积分10
10秒前
sissisue完成签到,获得积分10
10秒前
周围完成签到,获得积分10
10秒前
10秒前
Mizoresuki完成签到,获得积分20
11秒前
礼拜天发布了新的文献求助10
11秒前
加加加oo发布了新的文献求助10
11秒前
小圆圈发布了新的文献求助10
11秒前
CipherSage应助星威采纳,获得10
11秒前
yyy发布了新的文献求助10
14秒前
14秒前
悦耳的万言完成签到,获得积分10
14秒前
科研通AI2S应助嘉仔采纳,获得10
14秒前
华仔应助九旁十五便士采纳,获得10
15秒前
龙行天下发布了新的文献求助10
17秒前
徐徐发布了新的文献求助10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227431
求助须知:如何正确求助?哪些是违规求助? 2875461
关于积分的说明 8191338
捐赠科研通 2542765
什么是DOI,文献DOI怎么找? 1373026
科研通“疑难数据库(出版商)”最低求助积分说明 646618
邀请新用户注册赠送积分活动 621099