FedSeProto: Learning Semantic Prototype in Federated Learning

计算机科学 万维网
作者
Yanyi Lai,Lele Fu,Tianchi Liao,Chuan Chen,Zibin Zheng
出处
期刊:Frontiers in artificial intelligence and applications
标识
DOI:10.3233/faia240731
摘要

Federated learning enables multiple clients to collaboratively train a global model without revealing their local data. However, conventional federated learning often overlooks the fact that data stored on different clients may originate from diverse domains, and the resulting domain shift problem can significantly impair the performance of the global model. In this paper, we introduce Federated Semantic Prototype Learning (FedSeProto), a semantic prototype-based approach designed to address the domain shift issue in federated learning. The proposed method comprises two components: feature decoupling and feature alignment. Feature decoupling aims to learn semantic prototypes that can represent semantic information associated with specific categories, while feature alignment utilizes these semantic prototypes to facilitate learning of cross-client consistent features. Two key techniques are employed to achieve feature decoupling. On one hand, feature separation is achieved through the minimization of mutual information between semantic and domain features. On the other hand, the knowledge distillation is leveraged to ensure that both semantic and domain features carry the correct information. For feature alignment, intra-class semantic features are used to generate the local prototypes, which are further aggregated to the global prototypes. These global prototypes serve as guides during the local training process. Specifically, the local intra-class semantic features are driven to close to the corresponding global prototypes, thereby encouraging all clients to learn the globally consistent semantic features. Comprehensive experiments conducted on four challenging multi-domain datasets demonstrate the effectiveness of the proposed method compared with existing federated learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助鹿小娇采纳,获得10
刚刚
锂安完成签到,获得积分10
1秒前
Tink完成签到,获得积分0
2秒前
初雪完成签到,获得积分10
3秒前
3秒前
一条咸鱼完成签到,获得积分10
4秒前
CoCoCat完成签到,获得积分20
4秒前
迷l发布了新的文献求助10
4秒前
5秒前
神勇的代荷完成签到 ,获得积分10
8秒前
9秒前
憨憨医生完成签到,获得积分10
9秒前
随风发布了新的文献求助10
9秒前
10秒前
Anna完成签到 ,获得积分10
10秒前
zhen_wang完成签到,获得积分10
11秒前
咸鱼好闲完成签到 ,获得积分10
12秒前
13秒前
13秒前
CC完成签到,获得积分10
13秒前
yuisl发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
是小曹啊发布了新的文献求助10
16秒前
hanatae完成签到,获得积分10
18秒前
Jackson完成签到 ,获得积分10
18秒前
54发布了新的文献求助10
19秒前
kangkang发布了新的文献求助10
20秒前
GET发布了新的文献求助10
20秒前
鹿小娇发布了新的文献求助10
21秒前
大个应助yuisl采纳,获得10
22秒前
26秒前
等待蜜蜂完成签到,获得积分10
28秒前
孔大漂亮完成签到,获得积分10
28秒前
28秒前
JamesPei应助林布林采纳,获得10
30秒前
31秒前
dd99081发布了新的文献求助10
31秒前
等待蜜蜂发布了新的文献求助30
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999460
求助须知:如何正确求助?哪些是违规求助? 3538836
关于积分的说明 11275255
捐赠科研通 3277713
什么是DOI,文献DOI怎么找? 1807651
邀请新用户注册赠送积分活动 883983
科研通“疑难数据库(出版商)”最低求助积分说明 810111