Comparative Assessment of Otolaryngology Knowledge Among Large Language Models

耳鼻咽喉科 头颈外科 领域(数学) 基线(sea) 医学 计算机科学 头颈部 医学物理学 自然语言处理 人工智能 外科 数学 海洋学 纯数学 地质学
作者
Dante J. Merlino,Santiago Romero‐Brufau,George Saieed,Kathryn M. Van Abel,Daniel L. Price,David Archibald,Gregory A. Ator,Matthew L. Carlson
出处
期刊:Laryngoscope [Wiley]
标识
DOI:10.1002/lary.31781
摘要

Objective The purpose of this study was to evaluate the performance of advanced large language models from OpenAI (GPT‐3.5 and GPT‐4), Google (PaLM2 and MedPaLM), and an open source model from Meta (Llama3:70b) in answering clinical test multiple choice questions in the field of otolaryngology—head and neck surgery. Methods A dataset of 4566 otolaryngology questions was used; each model was provided a standardized prompt followed by a question. One hundred questions that were answered incorrectly by all models were further interrogated to gain insight into the causes of incorrect answers. Results GPT4 was the most accurate, correctly answering 3520 of 4566 questions (77.1%). MedPaLM correctly answered 3223 of 4566 (70.6%) questions, while llama3:70b, GPT3.5, and PaLM2 were correct on 3052 of 4566 (66.8%), 2672 of 4566 (58.5%), and 2583 of 4566 (56.5%) questions. Three hundred and sixty‐nine questions were answered incorrectly by all models. Prompts to provide reasoning improved accuracy in all models: GPT4 changed from incorrect to correct answer 31% of the time, while GPT3.5, Llama3, PaLM2, and MedPaLM corrected their responses 25%, 18%, 19%, and 17% of the time, respectively. Conclusion Large language models vary in their understanding of otolaryngology‐specific clinical knowledge. OpenAI's GPT4 has a strong understanding of core concepts as well as detailed information in the field of otolaryngology. Its baseline understanding in this field makes it well‐suited to serve in roles related to head and neck surgery education provided that the appropriate precautions are taken and potential limitations are understood. Level of Evidence N/A Laryngoscope , 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助八宝粥采纳,获得10
1秒前
YG123发布了新的文献求助10
2秒前
慕青应助失眠的数据线采纳,获得10
4秒前
4秒前
4秒前
幸福完成签到,获得积分10
5秒前
5秒前
许起眸完成签到,获得积分10
6秒前
fuje完成签到,获得积分20
7秒前
lllllll完成签到,获得积分10
7秒前
WhenSing发布了新的文献求助10
7秒前
8秒前
9秒前
陈陈发布了新的文献求助10
9秒前
11秒前
Lanyiyang完成签到,获得积分10
14秒前
打打应助过时的冰菱采纳,获得10
14秒前
15秒前
科研通AI2S应助退场采纳,获得10
17秒前
WhenSing完成签到,获得积分10
17秒前
无花果应助陈陈采纳,获得10
17秒前
19秒前
老大完成签到,获得积分20
20秒前
zh给务实蓝的求助进行了留言
21秒前
Viva发布了新的文献求助30
21秒前
强健的雅绿完成签到,获得积分10
22秒前
22秒前
脑洞疼应助YG123采纳,获得10
22秒前
24秒前
yuanlai完成签到,获得积分10
25秒前
25秒前
zzmy完成签到,获得积分10
26秒前
动听师发布了新的文献求助10
26秒前
1+1应助愤怒的一笑采纳,获得10
27秒前
NexusExplorer应助董董采纳,获得10
29秒前
yunfan发布了新的文献求助10
30秒前
我是老大应助侯博文采纳,获得20
30秒前
JamesPei应助侯博文采纳,获得20
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325583
求助须知:如何正确求助?哪些是违规求助? 2956316
关于积分的说明 8580004
捐赠科研通 2634266
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654788