Test-time Training for Hyperspectral Image Super-resolution

高光谱成像 人工智能 计算机科学 计算机视觉 培训(气象学) 图像分辨率 图像处理 图像(数学) 模式识别(心理学) 考试(生物学) 遥感 地质学 地理 古生物学 气象学
作者
Ke Li,Luc Van Gool,Dengxin Dai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-12
标识
DOI:10.1109/tpami.2024.3461807
摘要

The progress on Hyperspectral image (HSI) super-resolution (SR) is still lagging behind the research of RGB image SR. HSIs usually have a high number of spectral bands, so accurately modeling spectral band interaction for HSI SR is hard. Also, training data for HSI SR is hard to obtain so the dataset is usually rather small. In this work, we propose a new test-time training method to tackle this problem. Specifically, a novel self-training framework is developed, where more accurate pseudo-labels and more accurate LR-HR relationships are generated so that the model can be further trained with them to improve performance. In order to better support our test-time training method, we also propose a new network architecture to learn HSI SR without modeling spectral band interaction and propose a new data augmentation method Spectral Mixup to increase the diversity of the training data at test time. We also collect a new HSI dataset with a diverse set of images of interesting objects ranging from food to vegetation, to materials, and to general scenes. Extensive experiments on multiple datasets show that our method can improve the performance of pre-trained models significantly after test-time training and outperform competing methods significantly for HSI SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XX完成签到,获得积分10
刚刚
刚刚
apricity完成签到,获得积分10
1秒前
1秒前
CodeCraft应助浮浮世世采纳,获得10
2秒前
2秒前
xiaorui完成签到,获得积分10
2秒前
科研通AI5应助香蕉冬云采纳,获得10
2秒前
科研互通发布了新的文献求助30
2秒前
早123完成签到 ,获得积分10
2秒前
风趣问筠完成签到,获得积分10
3秒前
带路完成签到,获得积分10
3秒前
wanci应助静静采纳,获得10
3秒前
幸运之星完成签到 ,获得积分20
3秒前
英姑应助木木采纳,获得10
4秒前
4秒前
乐乐应助OCTOPUS采纳,获得10
4秒前
huihui完成签到,获得积分10
4秒前
Hello应助肖遥采纳,获得10
4秒前
5秒前
SciGPT应助ping采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助20
5秒前
5秒前
5秒前
江南最长情完成签到,获得积分10
6秒前
今后应助khada采纳,获得10
6秒前
7秒前
FashionBoy应助zz采纳,获得10
7秒前
问题多多发布了新的文献求助10
8秒前
8秒前
与一完成签到 ,获得积分10
9秒前
Ava应助哈哈采纳,获得10
9秒前
9秒前
wsgdhz发布了新的文献求助10
10秒前
王开心应助kRAY采纳,获得10
10秒前
SciGPT应助芝麻球ii采纳,获得10
10秒前
10秒前
一键变瘦完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371