Direct Pore-Scale Modeling of Foam Flow through Rough Fractures

比例(比率) 流量(数学) 材料科学 地质学 石油工程 机械 复合材料 物理 量子力学
作者
Xuesong Ma,Bernard Chang,Maša Prodanović
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (15): 14449-14460 被引量:1
标识
DOI:10.1021/acs.energyfuels.4c01664
摘要

Foams are dispersions of gas bubbles within a liquid. They are often generated in porous and fractured media during co-injection of two fluids in the presence of a surfactant that lowers the surface tension to create and stabilize foam bubbles. Since foam viscosity is much larger than its constituent fluids, foam has many applications in subsurface engineering for controlling the mobility of fluids or carrying particulates. Pore geometry, thermodynamic conditions, molecular structure, and behavior of stabilizing agents such as surfactants or nanoparticles near gas/fluid or fluid/solid interfaces are some important factors affecting the stability and regeneration of foam in porous media. Those factors also explain why direct simulation of foam (re)generation is still a modeling challenge. We present the first direct pore-scale modeling simulation of foam generation and flow in two-dimensional (2D) and three-dimensional (3D) imaged rough fracture. We adapt the free surface lattice Boltzmann method for simulation in an imaged fracture geometry. The model couples liquid momentum transport between bubbles and diffusion of dissolved gas within liquid into bubbles and is adapted from the open solver LBfoam that originally does not account for porous media. To our knowledge, this is the first 3D model with foam flow driven by pressure gradient in a fractured porous medium, gas diffusion through liquid phase, and interface advection as a result of the aforementioned mechanisms at pore scale. We observe bubble coalescence, deformation, splitting, and trapping in the rough fracture, and we quantify them using morphological parameters (Minkowski functionals) at different surface tension, liquid viscosity, pressure gradient, and temperature conditions. Foam can be regenerated as gas migrates across a sharp fracture corner, caused by snap-off and lamella division mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜鸡5号完成签到,获得积分10
刚刚
豆子发布了新的文献求助10
1秒前
kld发布了新的文献求助10
1秒前
WTaMi完成签到 ,获得积分10
1秒前
2秒前
由富发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
rrr发布了新的文献求助10
5秒前
山高鹭沅发布了新的文献求助10
5秒前
6秒前
李健应助妮妮采纳,获得10
6秒前
6秒前
7秒前
1111发布了新的文献求助10
7秒前
random完成签到,获得积分10
8秒前
8秒前
9秒前
可爱的函函应助平淡路人采纳,获得10
9秒前
哒哒哒宰发布了新的文献求助30
10秒前
脑洞疼应助GuMingyang采纳,获得10
11秒前
言宴发布了新的文献求助10
12秒前
binbin完成签到,获得积分10
13秒前
tony发布了新的文献求助10
13秒前
小黑发布了新的文献求助50
13秒前
彭彭发布了新的文献求助10
14秒前
领导范儿应助wang123ye采纳,获得10
15秒前
16秒前
我是老大应助日进一data采纳,获得10
16秒前
16秒前
rrr完成签到,获得积分20
17秒前
20秒前
妮妮发布了新的文献求助10
23秒前
毛豆应助西叶采纳,获得10
24秒前
顾矜应助朝阳采纳,获得10
25秒前
追寻紫安应助dyyy采纳,获得30
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462848
求助须知:如何正确求助?哪些是违规求助? 3056398
关于积分的说明 9051936
捐赠科研通 2746091
什么是DOI,文献DOI怎么找? 1506817
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695747