AbdomenAtlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking

标杆管理 计算机科学 学习迁移 推论 人工智能 水准点(测量) 概化理论 注释 比例(比率) 机器学习 工作量 分割 众包 集合(抽象数据类型) 数据挖掘 地理 大地测量学 操作系统 数学 程序设计语言 量子力学 营销 统计 业务 万维网 物理
作者
Wenxuan Li,Chongyu Qu,Xiaoxi Chen,Pedro R. A. S. Bassi,Yijia Shi,Yuxiang Lai,Yu Qian,Huimin Xue,Yixiong Chen,Xiaorui Lin,Yutong Tang,Yining Cao,Haoqi Han,Zheyuan Zhang,J.D. Liu,Tiezheng Zhang,Yujiu Ma,Jincheng Wang,Guang Zhang,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103285-103285 被引量:3
标识
DOI:10.1016/j.media.2024.103285
摘要

We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673 K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms—the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuting完成签到,获得积分10
1秒前
思源应助英俊的晟睿采纳,获得10
1秒前
2秒前
2秒前
脑洞疼应助陈佳采纳,获得10
3秒前
拼搏的潘子完成签到,获得积分10
3秒前
3秒前
理想三寻完成签到,获得积分10
6秒前
EasonYao发布了新的文献求助10
7秒前
李爱国应助研友_LBaaX8采纳,获得10
8秒前
8秒前
乐乐应助yoyo采纳,获得10
9秒前
喜悦幻灵完成签到,获得积分10
10秒前
珍珠老爹应助博修采纳,获得10
10秒前
淼鑫发布了新的文献求助10
11秒前
开心的松思完成签到,获得积分10
11秒前
Wakey发布了新的文献求助10
13秒前
zyj完成签到,获得积分10
13秒前
13秒前
ziying126发布了新的文献求助10
15秒前
FashionBoy应助超帅的悟空采纳,获得10
18秒前
李大了发布了新的文献求助20
18秒前
田様应助joysa采纳,获得10
19秒前
慕青应助叶y采纳,获得10
21秒前
阿航完成签到,获得积分10
22秒前
虚心蜗牛完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
优雅的延恶完成签到,获得积分10
26秒前
26秒前
超帅的悟空完成签到,获得积分20
26秒前
wudizhuzhu233发布了新的文献求助10
26秒前
Hello应助淼鑫采纳,获得10
27秒前
火星上牛青完成签到,获得积分10
29秒前
高兴断秋完成签到,获得积分10
29秒前
30秒前
谁主沉浮完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150