AbdomenAtlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking

标杆管理 计算机科学 学习迁移 推论 人工智能 水准点(测量) 概化理论 注释 比例(比率) 机器学习 工作量 分割 众包 集合(抽象数据类型) 数据挖掘 地理 大地测量学 操作系统 数学 程序设计语言 量子力学 营销 统计 业务 万维网 物理
作者
Wenxuan Li,Chongyu Qu,Xiaoxi Chen,Pedro R. A. S. Bassi,Yijia Shi,Yuxiang Lai,Yu Qian,Huimin Xue,Yixiong Chen,Xiaorui Lin,Yutong Tang,Yining Cao,Haoqi Han,Zheyuan Zhang,J.D. Liu,Tiezheng Zhang,Yujiu Ma,Jincheng Wang,Guang Zhang,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103285-103285 被引量:3
标识
DOI:10.1016/j.media.2024.103285
摘要

We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673 K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms—the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请不要喊我回答问题完成签到,获得积分10
刚刚
刚刚
eureka发布了新的文献求助10
刚刚
Aliaoovo完成签到,获得积分10
刚刚
甜甜白莲完成签到,获得积分20
1秒前
东方元语应助啊啊啊啊采纳,获得20
1秒前
H没烦恼完成签到,获得积分10
2秒前
俭朴的雨梅完成签到,获得积分20
2秒前
灰色头像发布了新的文献求助10
2秒前
Namtarn发布了新的文献求助30
3秒前
docyuchi完成签到,获得积分20
3秒前
3秒前
rdd完成签到,获得积分10
3秒前
3秒前
4秒前
Wind应助青阳采纳,获得10
4秒前
务实蜻蜓发布了新的文献求助10
4秒前
MillieWang完成签到,获得积分10
4秒前
独享发布了新的文献求助10
4秒前
徐仁森发布了新的文献求助10
4秒前
5秒前
天天快乐应助晚星采纳,获得10
5秒前
zz应助zakka采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
半凡完成签到 ,获得积分10
6秒前
7秒前
今后应助wnagliliya采纳,获得10
7秒前
干冷安完成签到,获得积分10
8秒前
欣欣发布了新的文献求助30
8秒前
LR完成签到,获得积分20
9秒前
科研通AI6应助唠叨的以柳采纳,获得10
9秒前
映易发布了新的文献求助10
10秒前
10秒前
小木安华发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
jian应助近代采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398