AbdomenAtlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking

标杆管理 计算机科学 学习迁移 推论 人工智能 水准点(测量) 概化理论 注释 比例(比率) 机器学习 工作量 分割 众包 集合(抽象数据类型) 数据挖掘 地理 大地测量学 操作系统 数学 程序设计语言 量子力学 营销 统计 业务 万维网 物理
作者
Wenxuan Li,Chongyu Qu,Xiaoxi Chen,Pedro R. A. S. Bassi,Yijia Shi,Yuxiang Lai,Yu Qian,Huimin Xue,Yixiong Chen,Xiaorui Lin,Yutong Tang,Yining Cao,Haoqi Han,Zheyuan Zhang,J.D. Liu,Tiezheng Zhang,Yujiu Ma,Jincheng Wang,Guang Zhang,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103285-103285 被引量:3
标识
DOI:10.1016/j.media.2024.103285
摘要

We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673 K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms—the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助儒雅致远采纳,获得10
刚刚
泡泡儿发布了新的文献求助10
1秒前
阳光的桐完成签到,获得积分10
2秒前
3秒前
岳维芸发布了新的文献求助10
3秒前
好久不见应助听话的寒烟采纳,获得30
3秒前
xixi发布了新的文献求助30
4秒前
shushu完成签到 ,获得积分10
4秒前
完美世界应助yuaner采纳,获得10
4秒前
libe发布了新的文献求助10
5秒前
朴素的怜雪完成签到,获得积分10
5秒前
害怕的靖巧完成签到,获得积分10
6秒前
6秒前
wanci应助独特的采纳,获得10
7秒前
tiptip应助Wu采纳,获得10
7秒前
PAPA完成签到,获得积分10
8秒前
Orange应助renwoxing采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
友好锦程完成签到,获得积分20
11秒前
慕青应助弯刀划过红玫瑰采纳,获得10
11秒前
hyf发布了新的文献求助10
13秒前
天天快乐应助求知的周采纳,获得10
13秒前
13秒前
14秒前
Abyxwz发布了新的文献求助10
15秒前
15秒前
chu发布了新的文献求助10
15秒前
CNS牛纸涛完成签到,获得积分10
16秒前
Huang发布了新的文献求助10
16秒前
Zhang发布了新的文献求助10
16秒前
16秒前
17秒前
暴打小猪仔完成签到,获得积分10
17秒前
找KGO发布了新的文献求助10
17秒前
ycy完成签到,获得积分10
17秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137