对偶(语法数字)
计算机科学
Atom(片上系统)
人工智能
化学
计算生物学
生物
嵌入式系统
艺术
文学类
作者
Xiaoyun Lin,Xiaowei Du,Shican Wu,Shiyu Zhen,Wei Liu,Chunlei Pei,Peng Zhang,Zhi‐Jian Zhao,Jinlong Gong
标识
DOI:10.1038/s41467-024-52519-8
摘要
Low-cost, efficient catalyst high-throughput screening is crucial for future renewable energy technology. Interpretable machine learning is a powerful method for accelerating catalyst design by extracting physical meaning but faces huge challenges. This paper describes an interpretable descriptor model to unify activity and selectivity prediction for multiple electrocatalytic reactions (i.e., O
科研通智能强力驱动
Strongly Powered by AbleSci AI