已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image inpainting algorithm based on double curvature-driven diffusion model with P-Laplace operator

修补 曲率 算法 操作员(生物学) 图像(数学) 数学 计算机科学 人工智能 化学 几何学 生物化学 抑制因子 转录因子 基因
作者
Lifang Xiao,Jianhao Wu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0305470-e0305470
标识
DOI:10.1371/journal.pone.0305470
摘要

The method of partial differential equations for image inpainting achieves better repair results and is economically feasible with fast repair time. Addresses the inability of Curvature-Driven Diffusion (CDD) models to repair complex textures or edges when the input image is affected by severe noise or distortion, resulting in discontinuous repair features, blurred detail textures, and an inability to deal with the consistency of global image content, In this paper, we have the CDD model of P-Laplace operator term to image inpainting. In this method, the P-Laplace operator is firstly introduced into the diffusion term of CDD model to regulate the diffusion speed; then the improved CDD model is discretized, and the known information around the broken region is divided into two weighted average iterations to get the inpainting image; finally, the final inpainting image is obtained by weighted averaging the two image inpainting images according to the distancing. Experiments show that the model restoration results in this paper are more rational in terms of texture structure and outperform other models in terms of visualization and objective data. Comparing the inpainting images with 150, 1000 and 100 iterations respectively, Total Variation(TV) model and the CDD model inpainting algorithm always has inpainting traces in details, and TV model can't meet the visual connectivity, but the algorithm in this paper can remove the inpainting traces well, TV model and the CDD model inpainting algorithm always have inpainting traces in details, and TV model can't meet the visual connectivity, but the algorithm in this paper can remove the inpainting traces well. Of the images used for testing, the highest PSNR reached 38.7982, SSIM reached 0.9407, and FSIM reached 0.9781, the algorithm not only inpainting the effect and, but also has fewer iterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzw完成签到,获得积分10
1秒前
王文茹发布了新的文献求助10
2秒前
所所应助ning采纳,获得10
2秒前
乐乐应助安然采纳,获得10
3秒前
3秒前
科研通AI5应助东方翰采纳,获得10
4秒前
网易乐发布了新的文献求助10
6秒前
李爱国应助翼点采纳,获得10
7秒前
SYLH应助安然采纳,获得10
8秒前
9秒前
10秒前
桐桐应助王文茹采纳,获得10
10秒前
王木木完成签到,获得积分10
10秒前
CipherSage应助mmyhn采纳,获得200
11秒前
852应助安然采纳,获得10
12秒前
ljm完成签到,获得积分10
12秒前
13秒前
14秒前
许七安发布了新的文献求助10
14秒前
李健应助安然采纳,获得10
15秒前
16秒前
seven完成签到 ,获得积分10
16秒前
Paddi发布了新的文献求助10
16秒前
赘婿应助Liury采纳,获得10
17秒前
18秒前
东方翰发布了新的文献求助10
18秒前
SYLH应助安然采纳,获得10
18秒前
啦啦完成签到,获得积分10
19秒前
19秒前
ljb完成签到 ,获得积分10
20秒前
君寻完成签到 ,获得积分10
20秒前
21秒前
21秒前
22秒前
23秒前
情怀应助笑点低从蓉采纳,获得10
25秒前
xy完成签到 ,获得积分10
26秒前
pluto应助yy采纳,获得20
27秒前
27秒前
hym111完成签到,获得积分10
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196