In this study, an economic and controllable Marangoni self-assembly approach is designed to prepare the heterostructured nanocoatings (8-28 nm) consisting of alternately stacked mosaic nanosheets of hexagonal boron nitride (h-BN) and graphene. The resulting 2D nanocoatings exhibit a combination of advantageous properties, such as prevention of interfacial reactions, robust interfacial binding, a labyrinthine barrier effect, inhibition of galvanic corrosion, and alleviation of internal stress. The protective property of graphene/h-BN heterostructured nanocoatings is studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy, with the theoretical support of first-principles calculations. The corrosion current density of ≈28 nm-thick graphene/h-BN multilayer coated stainless steel is 1.82 × 10