拉曼光谱
钻石
化学气相沉积
分析化学(期刊)
介电谱
材料科学
循环伏安法
微波食品加热
光谱学
电极
化学
光电子学
电化学
光学
有机化学
物理
量子力学
物理化学
复合材料
作者
Yusuke Tominaga,Akihiro Uchida,Y.M. Hunge,Isao Shitanda,Masayuki Itagaki,Takeshi Kondo,Makoto Yuasa,Hiroshi Uestuska,Chiaki Terashima
标识
DOI:10.1016/j.solidstatesciences.2024.107650
摘要
Phosphorus-doped diamond (PDD) exhibits excellent properties, making it suitable for a wide range of applications, such as electronic devices and electrodes. Here, we report the first synthesis of PDD by in-liquid microwave plasma CVD (IL-MPCVD) under high-pressure and low-power conditions. A mixture of methanol (MeOH) and ethanol (EtOH) with triethyl phosphate ((C2H5)3PO4) and (P/C = 1000 ppm) was used for the PDD deposition. Samples were characterized by laser microscopy, Raman spectroscopy, and glow discharge optical emission spectroscopy. Notably, PDD was successfully produced at a growth rate of 280 μm/h, which is two orders of magnitude higher than conventional CVD methods. Additionally, cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used to evaluate the electrochemical properties of PDD. As a result, we confirmed the wide potential window characteristic of conductive diamond and determined that the donor density was [P] = 3.8 × 101⁷ cm⁻³. Therefore, it is clear that IL-MPCVD is applicable for very high growth rates in the CVD process for PDD synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI