How viscous bubbles collapse: Topological and symmetry-breaking instabilities in curvature-driven hydrodynamics

不稳定性 物理 曲率 拓扑缺陷 经典力学 机械 气泡 偏斜 压扁 对称(几何) 对称性破坏 粘性液体 几何学 液晶 凝聚态物理 量子力学 天文 数学
作者
Benny Davidovitch,Avraham Klein
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (32)
标识
DOI:10.1073/pnas.2310195121
摘要

The duality between deformations of elastic bodies and noninertial flows in viscous liquids has been a guiding principle in decades of research. However, this duality is broken when a spheroidal or other doubly curved liquid film is suddenly forced out of mechanical equilibrium, as occurs, e.g., when the pressure inside a liquid bubble drops rapidly due to rupture or controlled evacuation. In such cases, the film may evolve through a noninertial yet geometrically nonlinear surface dynamics, which has remained largely unexplored. We reveal the driver of such dynamics as temporal variations in the curvature of the evolving surface. Focusing on the prototypical example of a floating bubble that undergoes rapid depressurization, we show that the bubble surface evolves via a topological instability and a subsequent front propagation, whereby a small planar zone that includes a singular flow structure, analogous to a disclination in elastic systems, nucleates spontaneously and expands in the spherically shaped film. This flow pattern brings about hoop compression and triggers another, symmetry-breaking instability to the formation of radial wrinkles that invade the flattening film. Our analysis reveals the dynamics as a nonequilibrium branch of “jellium” physics, whereby a rate-of-change of surface curvature in a viscous film is akin to charge in an electrostatic medium that comprises polarizable and conducting domains. We explain key features underlying recent experiments and highlight a qualitative inconsistency between the prediction of linear stability analysis and the observed “wavelength” of surface wrinkles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助坨坨西州采纳,获得10
1秒前
1秒前
华华完成签到,获得积分10
1秒前
刘明发布了新的文献求助10
1秒前
1604531786发布了新的文献求助10
3秒前
魁梧的小霸王完成签到,获得积分10
3秒前
星辰大海应助123采纳,获得10
3秒前
3秒前
是一只象完成签到,获得积分20
3秒前
科研通AI5应助海鸥海鸥采纳,获得10
4秒前
幸福遥完成签到,获得积分10
5秒前
5秒前
小王发布了新的文献求助10
5秒前
热心的代桃完成签到,获得积分10
5秒前
CodeCraft应助Olsters采纳,获得10
5秒前
6秒前
研友_IEEE快到碗里来完成签到,获得积分10
7秒前
哈哈大笑应助吴岳采纳,获得10
7秒前
7秒前
酷炫中蓝完成签到,获得积分10
7秒前
早川完成签到 ,获得积分10
8秒前
拼搏语薇完成签到,获得积分10
8秒前
科研通AI5应助SCI采纳,获得10
9秒前
dling02完成签到 ,获得积分10
9秒前
9秒前
是天使呢完成签到,获得积分10
9秒前
10秒前
10秒前
内向秋寒发布了新的文献求助10
10秒前
cc发布了新的文献求助10
10秒前
ding应助zhui采纳,获得10
11秒前
drwang120完成签到 ,获得积分10
11秒前
坨坨西州完成签到,获得积分10
12秒前
海绵体宝宝应助Louise采纳,获得20
12秒前
小马甲应助lichaoyes采纳,获得10
12秒前
12秒前
13秒前
13秒前
坨坨西州发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794