已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of PRE-SARC (PREdiction of SARCopenia Risk in Community Older Adults) Sarcopenia Prediction Model

肌萎缩 医学 接收机工作特性 逻辑回归 人口 队列 风险评估 队列研究 老年学 内科学 环境卫生 计算机科学 计算机安全
作者
Taiping Lin,Rui Liang,Quhong Song,Hualong Liao,Miao Dai,Tingting Jiang,Xiangping Tu,Xiaoyu Shu,Xiaotao Huang,Ning Ge,Ke Wan,Jirong Yue
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:25 (9): 105128-105128 被引量:1
标识
DOI:10.1016/j.jamda.2024.105128
摘要

Objective Reliable identification of high-risk older adults who are likely to develop sarcopenia is essential to implement targeted preventive measures and follow-up. However, no sarcopenia prediction model is currently available for community use. Our objective was to develop and validate a risk prediction model for calculating the 1-year absolute risk of developing sarcopenia in an aging population. Methods One prospective population-based cohort of non-sarcopenic individuals aged 60 years or older were used for the development of a sarcopenia risk prediction model and model validation. Sarcopenia was defined according to the 2019 Asian Working Group for Sarcopenia consensus. Stepwise logistic regression was used to identify risk factors for sarcopenia incidence within a 1-year follow-up. Model performance was evaluated using the area under the receiver operating characteristics curve (AUROC) and calibration plot, respectively. Results The development cohort included 1042 older adults, among whom 87 participants developed sarcopenia during a 1-year follow-up. The PRE-SARC (PREdiction of SARCopenia Risk in community older adults) model can accurately predict the 1-year risk of sarcopenia by using 7 easily accessible community-based predictors. The PRE-SARC model performed well in predicting sarcopenia, with an AUROC of 87% (95% CI, 0.83-0.90) and good calibration. Internal validation showed minimal optimism, with an adjusted AUROC of 0.85. The prediction score was categorized into 4 risk groups: low (0%-10%), moderate (>10%-20%), high (>20%-40%), and very high (>40%). The PRE-SARC model has been incorporated into an online risk calculator, which is freely accessible for daily clinical applications (https://sarcopeniariskprediction.shinyapps.io/dynnomapp/). Conclusions In community-dwelling individuals, the PRE-SARC model can accurately predict 1-year sarcopenia incidence. This model serves as a readily available and free accessible tool to identify older adults at high risk of sarcopenia, thereby facilitating personalized early preventive approaches and optimizing the utilization of health care resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耳东完成签到 ,获得积分10
刚刚
gao1发布了新的文献求助10
2秒前
布同完成签到,获得积分10
4秒前
bynowcc完成签到 ,获得积分10
4秒前
5秒前
9秒前
付广文发布了新的文献求助10
10秒前
冒险寻羊完成签到,获得积分10
12秒前
芒果完成签到 ,获得积分10
14秒前
陈生发布了新的文献求助10
15秒前
彭于晏应助gao1采纳,获得30
15秒前
lin完成签到,获得积分10
22秒前
27秒前
27秒前
甜甜甜完成签到 ,获得积分10
28秒前
高文昊发布了新的文献求助10
33秒前
xiao完成签到 ,获得积分10
40秒前
为什么不学习完成签到,获得积分10
42秒前
活力的小猫咪完成签到 ,获得积分10
44秒前
那就来吧发布了新的文献求助20
45秒前
爱学习的11完成签到,获得积分10
49秒前
scarlet完成签到 ,获得积分10
49秒前
李文岐完成签到 ,获得积分10
52秒前
喵喵完成签到 ,获得积分10
55秒前
动听剑心完成签到 ,获得积分10
55秒前
飘逸锦程完成签到 ,获得积分10
57秒前
58秒前
1分钟前
1分钟前
奕泽完成签到 ,获得积分10
1分钟前
Dream点壹完成签到,获得积分10
1分钟前
研友_VZG7GZ应助爱学习的11采纳,获得10
1分钟前
开画关注了科研通微信公众号
1分钟前
吕培森发布了新的文献求助10
1分钟前
子羽完成签到,获得积分10
1分钟前
lala完成签到,获得积分10
1分钟前
1分钟前
空空糯米团完成签到 ,获得积分10
1分钟前
战神林北完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125967
求助须知:如何正确求助?哪些是违规求助? 2776233
关于积分的说明 7729471
捐赠科研通 2431595
什么是DOI,文献DOI怎么找? 1292160
科研通“疑难数据库(出版商)”最低求助积分说明 622548
版权声明 600392