Nanoliter‐Scale Light–Matter Interaction in a Fiber‐Tip Cavity Enables Sensitive Photothermal Gas Detection

光热治疗 材料科学 光纤 比例(比率) 光电子学 纤维 光学 纳米技术 物理 复合材料 量子力学
作者
Yue Yan,Xunzhou Xiao,Qinxue Nie,Zhen Wang,Y Chen,Jiahao Wu,Nansen Zhou,Renjie Zhou,Sen Yang,Wei Ren
出处
期刊:Laser & Photonics Reviews [Wiley]
标识
DOI:10.1002/lpor.202400907
摘要

Abstract Laser spectroscopy offers a significant tool for revealing specific molecular details with the desired accuracy and sensitivity. However, it poses challenges to maintain high sensitivity when targeting a micro‐region. Here, a dual‐enhanced photothermal approach is presented using a high‐finesse fiber Fabry–Pérot (F–P) cavity, tailored for highly sensitive chemical sensing with nanoliter‐scale light–matter interaction. A spheric surface (diameter: 50 µm, radius of curvature: 910 µm) is created on the fiber tip using focused ion beam milling. By adding a high‐reflectivity dielectric coating to the spheric surface, a fiber F–P cavity is obtained with a length of 473 µm and a finesse exceeding 4000. The intra‐cavity pump light within the gas‐filled fiber cavity generates a strong photothermal effect upon gas absorption. This effect induces phase modulation, which is amplified and detected by coupling a probe laser to the fiber cavity‐based interferometer. A minimum detection limit of 10 parts‐per‐billion (ppb) of C 2 H 2 at 1530.37 nm is demonstrated using only 1 mW of pump power, corresponding to a normalized noise equivalent absorption coefficient of 9.1×10 −11 cm −1 ∙W∙Hz −1/2 . This platform breaks the bottleneck of ultrasensitive gas detection with a very short light–matter interaction length, promising significant advancements in microscale chemical analysis through optical investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助春分夏至采纳,获得10
2秒前
yuyingzheng发布了新的文献求助10
2秒前
小菠萝完成签到,获得积分10
3秒前
栀蓝发布了新的文献求助10
5秒前
乐乐宝完成签到,获得积分10
5秒前
卓天宇完成签到,获得积分10
7秒前
8秒前
庾幻儿完成签到,获得积分10
8秒前
田様应助悦耳的曼荷采纳,获得10
12秒前
13秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
还单身的皮皮虾完成签到 ,获得积分10
14秒前
pupil发布了新的文献求助10
14秒前
情怀应助yuyingzheng采纳,获得10
15秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助zyin采纳,获得10
19秒前
ccm应助羽毛采纳,获得10
19秒前
byby完成签到,获得积分10
20秒前
22秒前
小七完成签到,获得积分10
23秒前
24秒前
抱素完成签到,获得积分10
24秒前
baihehuakai发布了新的文献求助30
24秒前
25秒前
hututu完成签到 ,获得积分10
26秒前
27秒前
田様应助guangming采纳,获得10
27秒前
春分夏至发布了新的文献求助10
27秒前
28秒前
MI完成签到,获得积分10
29秒前
31秒前
啦啦啦完成签到,获得积分10
32秒前
32秒前
mosisa发布了新的文献求助10
32秒前
36秒前
mxl完成签到,获得积分10
37秒前
fantast完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167696
捐赠科研通 4456817
什么是DOI,文献DOI怎么找? 2444327
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412731